`
touya
  • 浏览: 75735 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

趁热打铁,再转一篇epoll学习笔记

阅读更多
epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。


2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里


3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

从man手册中,得到ET和LT的具体描述如下

EPOLL事件有两种模型:
Edge Triggered (ET)
Level Triggered (LT)

假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......

Edge Triggered 工作模式:
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
   i    基于非阻塞文件句柄
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。


然后详细解释ET, LT:

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。

在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)
ET(edge- triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认

另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:
while(rs)
{
  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
  if(buflen < 0)
  {
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
    // 在这里就当作是该次事件已处理处.
    if(errno == EAGAIN)
     break;
    else
     return;
   }
   else if(buflen == 0)
   {
     // 这里表示对端的socket已正常关闭.
   }
   if(buflen == sizeof(buf)
     rs = 1;   // 需要再次读取
   else
     rs = 0;
}


还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回 -1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
  ssize_t tmp;
  size_t total = buflen;
  const char *p = buffer;

  while(1)
  {
    tmp = send(sockfd, p, total, 0);
    if(tmp < 0)
    {
      // 当send收到信号时,可以继续写,但这里返回-1.
      if(errno == EINTR)
        return -1;

      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
      // 在这里做延时后再重试.
      if(errno == EAGAIN)
      {
        usleep(1000);
        continue;
      }

      return -1;
    }

    if((size_t)tmp == total)
      return buflen;

    total -= tmp;
    p += tmp;
  }

  return tmp;
}
分享到:
评论
1 楼 touya 2009-06-25  
总结来看,epoll的ET模式和LT模式可以这样理解:
LT模式(Level Triggered),只要监控的FD是就绪状态,内核就会通知你去取数据,不管上次有没有通知过(这样就算上次你接到通知,处理了一些数据,但并未处理完,该FD的就绪状态并未改变,那也会持续收到通知)

ET模式(Edge Triggered),号称高速模式,只有监控的FD从未就绪变为就绪,也就是状态改变时,才会通知,这样避免了重复通知,但程序员需要对应的东西就多了,需要考虑更多情况。

这里再补充一下FD的概念:
我们都知道在C标准库中,我们打开文件是这样的:
#include <stdio.h>
FILE *fopen(const char *path, const char *mode);

返回值:成功返回文件指针,出错返回NULL并设置errno

这里返回的实际上是一个经过C库包装过的文件句柄,它是包含了FD的一个结构体,它实际上是调用内核的open函数,得到FD的,我们来看看内核的open函数(一般又称为无缓冲IO)

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

返回值:成功返回新分配的文件描述符,出错返回-1并设置errno

看到了吧,这里返回值是一个int型的,这就是内核为每个进程分派的FD了(File Descriptor,文件描述符)
在linux上,每个开启的进程,内核会为他默认打开三个FD,都指向同一个文件/dev/tty(也就是终端啦),FD号分别是0,1,2;对应STDIN、STDOUT、STDERR

我们可以在/usr/include/unistd.h头文件中找到其定义:
/* Standard file descriptors.  */
#define STDIN_FILENO    0       /* Standard input.  */
#define STDOUT_FILENO   1       /* Standard output.  */
#define STDERR_FILENO   2       /* Standard error output.  */


在程序中打开的文件句柄,其FD号就会从3开始递增,当然,一旦有FD被关闭,那么内核下次就会分派这个被释放的最小FD,如果你的程序开头就close(1),然后open("output",O_RDWR),表示你把输出到终端改为输出到output这个文件了,这时output文件对应的FD就是1了,呵呵

顺便解释一下我们平时经常用的输入输出重定向命令:
./command > output 2>> /dev/null
这个命令我们都知道是运行commmand,正常输出到output文件,错误输出到/dev/null,其实就是丢弃错误啦,怎么深入理解一把呢?
这里的2>>,实际上就是指“FD=2”,“>>”是指追加方式打开,也就是把原来的STDERR(FD=2的家伙)改成了指向/dev/null,并以追加方式打开,这样理解了吧?
同理, > output实际上可以写成: 1> output,这是等价的
另外,我们还可以写:
./command > /dev/null 2>>&1
这个&1就是反向引用FD=1的文件描述符,写在>>后面时,不能加空格,并且要加&引用符,这句就可以解释为运行command命令,正常输出到/dev/null,错误也输出到/dev/null
这个世界清静了,啥信息都不会打印了,呵呵

相关推荐

    epoll学习笔记.doc

    本笔记将深入探讨`epoll`的工作原理、两种主要模式——Edge Triggered (ET) 和 Level Triggered (LT),以及如何在实际编码中使用`epoll`。 首先,`epoll`相比于传统的`select`和`poll`,提供了更高的性能和更灵活的...

    epoll学习资料

    Linux下的Epoll是一种高效、可扩展的I/O多路复用技术,主要用于处理大量并发连接。Epoll在处理网络服务器的并发性能上显著优于传统的select和poll机制,尤其适合于大规模并发I/O操作的场景,如高并发的TCP服务器和...

    epoll 使用golang实现

    本篇文章将详细探讨如何使用Golang语言在Linux、MacOS和Windows平台上实现`epoll`。 首先,我们来理解`epoll`的工作原理。`epoll`基于`IO多路复用`技术,它提供了一个接口,允许程序注册一组文件描述符(如套接字)...

    epoll模型的一个例子

    在Linux系统编程中,`epoll`是一种高效、可扩展的I/O多路复用技术,主要用于处理大量的并发连接。`epoll`模型是解决高并发服务器性能瓶颈的有效手段之一,它比传统的`select`和`poll`模型更加先进,能够更有效地管理...

    epoll学习实例

    epoll学习实例,epoll是Linux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。另一点原因就是...

    linux epoll多线程编程 例子

    在Linux系统中,epoll是I/O多路复用技术的一种高效实现,它极大地改进了传统的轮询方式,尤其在处理大量并发连接时表现出色。本文将深入探讨如何在多线程环境中使用epoll进行程序设计,以提高系统的并行处理能力。 ...

    Linux C++ epoll使用范例

    在Linux系统中,`epoll`是用于I/O...综上所述,"Linux C++ epoll使用范例"中的代码可以作为学习和实践`epoll`的参考,通过客户端、服务端及测试程序,读者可以深入理解`epoll`的工作机制,并能实际操作中提升系统性能。

    Lua的epoll模块lua-epoll.zip

    epfd,err=epoll.create() 创建一个 epoll 文件描述符。ok,err=epoll.register(epfd,fd,eventmask) 把目标文件描述符 fd 注册到由 epfd 引用的 epoll 实例上并把相应的事件 event 与内部的 fd 相链接。ok,...

    epoll demo(LT和ET)

    本篇将深入讲解`epoll`的工作原理,以及如何实现`Level Triggered (LT)`模式和`Edge Triggered (ET)`模式。 首先,理解`epoll`的基本概念。`epoll`通过`epoll_create()`创建一个`epoll`实例,然后使用`epoll_ctl()`...

    Linux QT Epoll 服务器Demo

    这个Demo对于学习如何在Linux环境下使用QT结合Epoll开发高并发服务器具有很高的参考价值。通过理解Epoll的工作原理和QT的网络编程模型,开发者可以构建出性能优异、能够应对大量并发连接的服务器应用。

    epoll机制epoll_create、epoll_ctl、epoll_wait、close(在epoll的ET模式下,read和write或send和recv当返回值0且errno=EAGAIN - linking530的专栏 - CSDN博客.mht

    epoll机制epoll_create、epoll_ctl、epoll_wait、close(在epoll的ET模式下,read和write或send和recv当返回值0且errno=EAGAIN - linking530的专栏 - CSDN博客.mht

    epoll内核代码学习

    【epoll内核代码学习】 epoll是一种高效、可扩展的I/O事件通知机制,用于Linux内核中,尤其适用于高并发的网络编程。...学习epoll的内核代码有助于理解其底层原理,从而更好地优化和利用这一机制。

    epoll回射服务器

    总之,epoll回射服务器是一个实用的学习项目,它涵盖了网络编程的核心概念,如套接字、I/O多路复用以及C++的内存管理和异常处理。初学者可以通过这个项目深入理解epoll的工作原理,并为更复杂的网络应用打下基础。

    epoll 精髓

    epoll是Linux内核为处理大量文件描述符而提供的一种高效的事件通知机制,它在Linux网络编程中被广泛使用,尤其在处理成千上万的连接时,性能远胜于select和poll这两种传统的I/O事件通知方法。 select方法的缺点在于...

    epoll 的并发服务器

    本篇将深入探讨`epoll`的工作原理、使用方法以及如何构建一个并发服务器模型。 ### 1. `epoll`工作原理 `epoll`采用了“事件驱动”的I/O复用模型,通过`epoll_create`创建一个`epoll`实例,然后使用`epoll_ctl`来...

    linux epoll 的实现

    Linux下的epoll是一种高效、可扩展的I/O多路复用技术,主要用于处理大量并发连接。它是基于事件驱动的I/O模型,适用于高并发服务器,如Web服务器、数据库服务器等。在epoll中,系统会监控一组文件描述符,当这些文件...

    poll 与epoll分析

    - `epoll_create`:创建一个epoll实例,并返回一个epoll专用的文件描述符。 - `epoll_ctl`:将文件描述符添加到epoll实例中,并指定对每个文件描述符感兴趣的事件。 epoll使用了红黑树来管理所有注册的文件描述符,...

    unbound + libevent + epoll学习.txt

    标题与描述中的“unbound + libevent + epoll学习”指向了深入探讨三个关键概念:Unbound(一个DNS解析器),Libevent(一个事件驱动库),以及epoll(一种高效的I/O多路复用机制)。这三者在现代网络编程、尤其是高...

    epoll服务器、客户端模型

    在IT行业中,网络编程是构建高性能服务的基础,而epoll是Linux系统中用于高并发I/O操作的关键技术。...在csmodel_v5.2这个版本中,可能包含了实现这一模型的具体代码和配置文件,供开发者学习和参考。

    linux epoll的封装类

    在Linux系统中,epoll是I/O多路复用技术的一种高效实现,它提供了一种在高并发场景下处理大量文件描述符(file descriptors)的能力。这个“linux epoll的封装类”是为了简化epoll接口的使用,使得初学者能够更轻松...

Global site tag (gtag.js) - Google Analytics