2.6内核引入了RCU锁,这种锁十分高效,总的说来就是读时加锁,写时拷贝,读后更新。具体的流程可以参照 rcu的相关文档。本文主要谈一下rcu在linux2.6内核的演变过程,它分别经历了三个阶段,分别是传统rcu锁,可抢占rcu锁以及2.6.29 中将要引入的树形分层rcu锁。
linux中最早引入的rcu锁十分的粗糙,实现原理也是非常简单,毕竟linux中不管多复杂的机制一开始的时候都是十分简单的,这一点可以看看 linux0.01到linux2.6.28的演变。传统的rcu锁就是在有读者读数据的时候加上rcu锁,注意这里的“加锁”仅仅是逻辑意义上的加锁, 至于真正实现可以很灵活,实际上linux的实现就没有用到所谓的锁,而是简单的禁用抢占。为何可以这么实现呢?因为在一个cpu上禁用了抢占也就禁用了 这个cpu上的进程切换,该cpu上的当前进程将一直运行,除非重新使能抢占,那么什么时候使能抢占呢?当然是在读者释放rcu锁的时候了,而linux 中传统rcu实现规定在进程切换的时候才会运行更新回调函数,这就是本质。每当一个cpu经历进程上下文切换时,rcu就说此cpu经过了一个 quiescent state,而所有的cpu都经过一个quiescent state的时间称为一个grace period,在这个grace period点之后,该grace period的更新回调函数就可以被安全的执行了,因为此时,系统已经确定所有的读者都不再持有rcu锁了。我们再次理一下这是为什么,读者释放锁就是使 能抢占,也就是可以切换进程,而且换进程的时候rcu就认为经过了一个quiescent state,所有的cpu都经过了一个quiescent state意味着所有的cpu都可以进程切换了,就是意味着所有的cpu上的读者都不再持有rcu锁了。就是这么简单,但是我们看一下这个实现会存在什么 问题,只要读者加锁,就意味着禁用抢占,就是禁止切换,这会很大地减低系统的交互性能,当然也会降低实时任务的性能,这一切都不是想要的,单独一个rcu 把大家都拖下水实在不应该,难道要为了保护读者保护的数据而冻住整个系统不让切换进程吗?传统的rcu不允许占有rcu的进程睡眠,睡眠了进程又不允许切 换,系统就相当于死掉了。于是下一个版本的rcu就要出来了,它试图将rcu对系统的影响减小到最小,也就是说将rcu单独做成一个可以自洽自治的模块, 它本身就可以处理好数据的保护而不再需要通过系统其它的机制来确保rcu读者数据在允许更新前被保护,这就是preemptible-RCU锁。其实 linux最开始引入的所谓传统的rcu锁是一个很失败的实现,操作系统的任务就是管理各种复杂的模块以模拟真实世界,优秀的操作系统可以做到模块化的管 理各种机制,比如进程,内存,设备,以及各种锁和并发机制等等,在管理它们的时候各个模块低耦合地通信而不至于互相依赖互相影响性能,如果说要想不出问 题,最简单也是最失败的方式就是只让一个进程跑,没有切换没有共享当然也就没有了竞争,没有竞争也就意味着没有竞态,也就意味着没有了并发问题,这很简 单,但是很不灵活,也让人感觉到这不是一个优秀的操作系统,就好像人不能说怕淋雨就不出门,正确的解决方案就是发明出雨伞和雨衣。linux第一代rcu 就是这种很差劲的实现。
既然第二代rcu是preemptible的rcu,那么就是说在持有rcu锁期间不再需要禁用抢占了,这个实现看到这里就知道它是一个很优秀的实现,因 为它不再需要抢占机制帮忙来实现数据保护,rcu的内部机制已经可以实现数据保护了。那么它是怎么实现的呢?如果你不想用别的机制实现rcu数据保护,那 么就要自己实现,当然代价就是引入新的数据结构和逻辑控制机制,在preemptible-rcu中,一个grace period被分解为了两个阶段而不是所有cpu完成quiescent state了所有的数据保护机制都是在这两个阶段大做文章而实现的。这两个阶段通过一系列的软件计数器来实现了rcu,之所以分为两个阶段是因为rcu有 lock和unlock两个动作,我们能不能像实现传统rcu一样,不用真正的锁就实现逻辑上的rcu锁呢?当然可以了,引入一个每cpu变量:
#define GP_STAGES 2
struct rcu_data {
spinlock_t lock; //保护此结构中字段的自旋锁
long completed; //总的阶段计数器
int waitlistcount;
struct rcu_head *nextlist; //一些链表,记录更新回调函数
struct rcu_head **nexttail;
struct rcu_head *waitlist[GP_STAGES];
struct rcu_head **waittail[GP_STAGES];
struct rcu_head *donelist;
struct rcu_head **donetail;
long rcu_flipctr[2]; //这个很重要
struct rcu_head *nextschedlist;
struct rcu_head **nextschedtail;
struct rcu_head *waitschedlist;
struct rcu_head **waitschedtail;
int rcu_sched_sleeping;
};
rcu_flipctr 这个字段十分重要,它是一个数组,每个元素其实就是一个计数器,第一个元素记录的是在本阶段中的本cpu的rcu锁持有者数量,而第二个元素表示上个阶段 的还没有释放的本cpu的rcu锁数量,注意,只有unlock操作可以递减第二个元素,lock操作只能递增第一个元素,另外unlock操作也可以递 减第一个元素,一旦所有cpu的第二个元素的和变为0了,那么就可以向前推进一个阶段了,在下一个阶段中,第一个元素成了只有unlock才能递减的元 素,而第二个元素lock和unlock都可触及,记录着当前阶段的新rcu锁数量,往下依次类推。每个阶段都要等待所有cpu的rcu_flipctr 的同一个元素的和成为0,然后进入下一个阶段,进入下一个阶段同时交换rcu_flipctr的两个元素的意义。系统维持一个状态机,为rcu设置了好几 种状态,其中包括一个等待所有cpu的前一个阶段的rcu计数器降到0的状态,这一个状态过去以后,rcu状态机就可以向前推进一个阶段了,注意,可抢占 的rcu锁机制的重点执行点不再是grace period,而是一个grace period的两个阶段,可抢占的rcu锁也是以阶段为基准的,也就是说,在每一个阶段结束时都会有一个计数器的和降为0,这时同步将这个计数器对应的回 调函数链表推进到最前面,然后就可以安全地执行这些更新回调函数了,这里执行回调函数链表的时间是每个阶段结束,而不必等到一个grace period的第二个阶段结束时。原先的传统rcu的实现在机进程切换时更新quiescent state状态然后判断是否过了一个grace period,现在的可抢占的rcu中,仅在时钟中断里面执行rcu状态机,状态机根据其前一个状态和当前的rcu状态采取不同的措施以维持状态机继续运 转,这么看来可抢占的rcu就和抢占没有关系了,cpu可以随便被抢占而不会破坏rcu读者保护的数据,于是就说rcu模块和抢占模块解耦合了,各自可以 通过各自的方式进行设计,调试,优化以提高性能而不用像原来那样互相依赖杂糅在一起。
我们看一下lock和unlock函数:
void __rcu_read_lock(void)
{
...
} else {
unsigned long flags;
local_irq_save(flags);
idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
local_irq_restore(flags);
}
}
void __rcu_read_unlock(void)
{
...
} else {
unsigned long flags;
local_irq_save(flags);
idx = ACCESS_ONCE(t->rcu_flipctr_idx);
ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
local_irq_restore(flags);
}
}
然后看一幅图:
另外linux绝对不会放过任何可以优化的空间的,只要能节省一条指令的执行,那么linux内核就会认为这么做就是值得的,比如在可抢占的rcu中,有两个函数:
void rcu_irq_enter(void)
{
int cpu = smp_processor_id();
struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
if (per_cpu(rcu_update_flag, cpu))
per_cpu(rcu_update_flag, cpu)++;
if (!in_interrupt() && (rdssp->dynticks & 0x1) == 0) {
rdssp->dynticks++;
smp_mb();
per_cpu(rcu_update_flag, cpu)++;
}
}
void rcu_irq_exit(void)
{
int cpu = smp_processor_id();
struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
if (per_cpu(rcu_update_flag, cpu)) {
if (--per_cpu(rcu_update_flag, cpu))
return;
WARN_ON(in_interrupt());
smp_mb();
rdssp->dynticks++;
WARN_ON(rdssp->dynticks & 0x1);
}
}
注 意有一个dynticks,它在进入irq和出去irq的时候都会递增,它被初始化为1,但是更要注意,这种递增是有条件的,比如在 rcu_irq_enter中,这个dynticks递增的条件就是中断非嵌套并且dynticks为偶数,显然第一次进入中断时dynticks不可能 为偶数,这就是说dynticks应该第一次在rcu_irq_exit中被增加,其实这个小算法的意义就是在进入nohz的时候或者停掉时钟节拍的时 候,当事cpu就没有必要按照常规的更新自己-通知他人-等待他人的方式维持状态机了,而是直接忽略当事cpu,按照应该的方式直接将该cpu向前推进, 这样的话就免去了很多操作,在实现这个小算法的时候,巧妙地利用了奇数偶数的方式,判断上减少了很多条指令,具体不多说,最后看一眼下面的利用 dynticks的函数:
static inline int rcu_try_flip_waitack_needed(int cpu)
{
long curr;
long snap;
struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
curr = rdssp->dynticks;
snap = rdssp->dynticks_snap;
smp_mb();
if ((curr == snap) && ((curr & 0x1) == 0))
return 0;
if ((curr - snap) > 2 || (curr & 0x1) == 0)
return 0;
return 1;
}
以上就是第二代的可抢占的rcu的思想和框架,那么第三代的rcu在那些方面有所创新呢?虽然第三代的rcu还没有被合进2.6.28内核,准备合入 2.6.29内核,但是Changelog中已经描述地很清晰了,它的主体思想就是:One effective way to reduce lock contention is to create a hierarchy.这句话真的要仔细推敲,这涉及到一个设计思想问题。分布式的对等结构是趋势吗?这么看来这句话就是大错特错了,但是分级管理确实可以 省很多事,这样分级正确的话,对等结构岂不是错误的结构吗?因此这个问题很有意义。国家机器应该是何种结构呢?金字塔式的等级政府合理吗?第三代的rcu 称为树形rcu,它采用了树结构,将锁定定义为一个分层分级的操作。这就类似于百米赛跑选拔过程,如果一共有50个人参加,那么有两种方式可以进行选拔, 一个是50个人同时上场,这样的话消耗巨大,另外就是分批分组选拔,这样的话消耗很小,分批分组其实就是分级选拔,将50个人分为25组,每组2人,这样 的话同时只有2人比赛,而且25组不必在一个场地上。树形的rcu就是这么干的,把所有的cpu分组,每组2个或多于2个,这样同时竞争rcu锁的cpu 就会减少很多,低级组的赢家竞争更高一级的rcu,然后赢家继续类似的竞争。见下面的几幅图:
在上面的图中,6个cpu分为3组,每两个同时竞争,之后赢了的3个再竞争,避免了6个同时竞争。
上面的图就不多说了。在存在大量cpu的机器上,难道要把cpu们分为很多组,必须两个一组吗?没有必要,两个一组当然可以,但是那是教条,实际上文档上讲64个cpu同时竞争锁的情形下所测试得到的性能是很不错的,因此上面的图示所示的两两分组的方式实属为了说明问题而设,树形rcu的真正用武之地不是少量cpu的机器而是大量,也就是成千cpu的巨猛机器,这些是我接触不到的,因此我只谈思想而没有任何实战经验。如果为了运用树形rcu而在拥有少量cpu的机器上实施的话,那么势必会因为树形复杂的结构而占用大量的内存空间,所得到的益处不能补偿其带来的弊端,因此一味追求新技术是不对的,必须了解这种新技术最适合的场合再作考虑,考虑好是用时间换空间还是用空间换时间,自己的系统是空间重要还是时间重要。
另外树形的rcu也实现了节能机制,同样利用可抢占rcu的奇数偶数小算法技巧实现,这样持有偶数计数器的cpu就不必被唤醒以维持状态机,因为持有偶数计数器的cpu处的状态是时钟节拍停止(nohz),或者挂起状态,这样就减少了不必要的能源消耗,可谓不错。
其实,树形的分层结构不但可以实现rcu,任何锁都可以用树形结构实现,树形锁的关键在于它可以减少同时竞争锁的cpu的数量,从而避免过多的竞态。.第 一代rcu在linux上实现表明了linux可以实现这个古老的锁机制;第二代的可抢占的rcu说明了一个优秀的机制可以作为一个模块脱离别的机制独立 存在,并且活得很好;第三代的树形rcu表明在实施上,分布式的对等结构是不错的,在管理上有时分层的等级结构是必要的,毕竟实施的时候实体很多很不确 定,分布式对等结构可以增加系统的对称性提高效率,但是管理的时候实体很确定,工作很明确,分层的等级结构带来的是更有条理,管理更有效.
分享到:
相关推荐
通过分析RCU在Linux内核中的演变过程,我们可以了解到Linux内核对新引入技术的影响,以及这些技术如何适应Linux内核中多样化的负载和平台需求。 #### 引言 Linux内核被广泛应用于从手机到超级计算机的各种平台上,...
Linux内核锁机制在不断发展中趋于成熟,从2.0版本到2.6版本经历了显著的变化。早期的原子操作、信号量等机制逐渐演变为更加高效、复杂的同步手段,如自旋锁和信号量等。 1. **自旋锁**: - **定义**:自旋锁是一种...
随着Linux内核版本的发展,锁机制经历了从简单到复杂的演变过程。早期的Linux内核使用单一的大内核锁(BKL, Big Kernel Lock)来保护整个内核的数据结构,这种方式在多处理器系统中表现不佳,因为它会导致不必要的...
**Linux内核的发展与演变**:回顾Linux内核的历史,了解不同版本间的差异。 - **Linux 2.6后的内核特点**:强调2.6版本以后的改进,如内存管理、调度算法等。 - **Linux内核的组成**: - **Linux内核源代码的目录...
基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
内容概要:本文详细介绍了利用MIM(金属-介质-金属)结构进行梯度相位超表面的设计与仿真的全过程。首先,通过Au-MgF2-Au三明治结构,利用磁偶极子共振实现高效的相位控制。接着,通过FDTD仿真工具,编写参数扫描脚本来优化纳米柱尺寸,从而实现广泛的相位覆盖。然后,通过近远场变换计算异常反射效率,验证了高达85%以上的反射效率。此外,还探讨了宽带性能验证的方法以及梯度相位阵列的设计思路。最后,提供了实用的代码片段和注意事项,帮助读者理解和复现实验结果。 适合人群:从事超表面研究、光束控制、电磁仿真领域的科研人员和技术开发者。 使用场景及目标:适用于希望深入了解MIM结构在超表面设计中的应用,掌握FDTD仿真技巧,以及探索高效光束偏折机制的研究人员。目标是通过详细的步骤指导,使读者能够成功复现并优化类似实验。 其他说明:文章不仅提供了理论背景,还包括大量具体的代码实现和实践经验分享,有助于读者更好地理解和应用所学知识。
内容概要:本文探讨了利用主从博弈理论解决共享储能与综合能源微网之间的利益冲突。通过MATLAB和YALMIP+Cplex工具,构建了微网运营商、用户聚合商和共享储能服务商三者之间的博弈模型。主要内容包括系统架构介绍、核心代码解析、求解策略以及仿真结果分析。文中详细展示了如何通过Stackelberg模型实现三方利益的最大化,并提供了完整的代码实现和详细的注释。 适合人群:从事能源互联网项目的研发人员、对博弈论及其应用感兴趣的学者和技术爱好者。 使用场景及目标:适用于希望深入了解能源系统优化、主从博弈理论及其MATLAB实现的研究人员和工程师。目标是掌握如何通过编程手段解决复杂系统中的多主体利益协调问题。 其他说明:文章不仅介绍了理论背景,还提供了具体的代码实现细节,如参数初始化、目标函数构建、约束条件处理等。此外,还包括了仿真结果的可视化展示,帮助读者更好地理解模型的实际效果。
内容概要:本文深入探讨了基于FPGA平台实现直方图统计与均衡化的全过程,涵盖直方图统计、累积直方图计算和均衡化处理三大核心步骤。文中不仅提供了详细的Verilog代码实现,还介绍了关键的设计思路和技术难点,如双端口BRAM的应用、流水线控制、除法器资源优化等。此外,通过Matlab代码进行了结果验证,确保FPGA实现的准确性。 适合人群:从事FPGA开发、图像处理、计算机视觉等相关领域的工程师和技术爱好者。 使用场景及目标:适用于需要高性能、低延迟图像处理的应用场景,如实时视频处理、医学图像处理、卫星图像增强等。目标是掌握FPGA实现直方图均衡化的技术细节,提高图像对比度和清晰度。 其他说明:文章强调了FPGA相较于CPU和GPU在并行处理和硬件加速方面的优势,并提供了丰富的代码实例和测试结果,帮助读者更好地理解和应用这一技术。
内容概要:本文详细介绍了利用LSTM模型进行高速公路车辆换道轨迹预测的研究过程。首先,作者使用来自I-80和US-101高速公路的实际换道轨迹数据,这些数据包括横向和纵向的速度、加速度以及轨迹坐标等特征。通过对数据进行预处理,如标准化、划分训练集和测试集等步骤,确保了数据的质量。然后,设计并实现了包含两层LSTM和一层全连接层的神经网络模型,采用Adam优化器进行训练,并通过交叉熵损失函数评估模型性能。实验结果显示,模型在测试集上的准确率达到85%,表明LSTM模型能够有效捕捉车辆换道的行为模式。 适合人群:从事自动驾驶技术研发的专业人士,尤其是对深度学习应用于交通预测感兴趣的工程师和技术研究人员。 使用场景及目标:本研究旨在提高自动驾驶系统的安全性与效率,具体应用场景包括但不限于城市快速路、高速公路等复杂路况下车辆换道行为的提前预测,从而辅助驾驶员或自动驾驶系统做出更好的决策。 其他说明:尽管目前模型已经取得了较好的成绩,但仍存在改进空间,例如可以通过引入更多类型的传感器数据(如摄像头图像)、优化现有模型结构等方式进一步提升预测精度。此外,考虑到实际应用中的实时性和鲁棒性要求,后续还需针对硬件平台进行针对性优化。
个人资料-111相关内容
内容概要:本文详细介绍了使用HyperWorks和LS-DYNA进行汽车碰撞仿真的方法和技术要点。从网格划分、材料属性设置、连接装配到最后的分析计算和结果处理,每个环节都配有具体的代码示例和注意事项。文中不仅涵盖了正碰、侧碰、偏置碰等多种类型的碰撞分析,还包括了座椅安全带约束等特殊部件的建模技巧。此外,作者分享了许多实践经验,如网格尺寸的选择、材料参数的设定以及求解器设置的最佳实践,帮助读者避免常见的陷阱并提高仿真效率。 适合人群:从事汽车工程领域的工程师、研究人员以及对汽车碰撞仿真感兴趣的初学者。 使用场景及目标:适用于需要掌握汽车碰撞仿真完整流程的专业人士,旨在提升其在实际项目中的应用能力,确保仿真结果的准确性和可靠性。 其他说明:附赠的源代码进一步增强了学习效果,使读者能够快速上手并在实践中不断优化自己的技能。
内容概要:本文详细介绍了如何在MATLAB/Simulink环境中搭建四分之一车被动悬架双质量(二自由度)模型。该模型主要用于研究车辆悬架系统在垂直方向上的动态特性,特别是面对路面不平度时的表现。文中不仅提供了具体的建模步骤,包括输入模块、模型主体搭建和输出模块的设计,还给出了详细的参数配置方法和仿真分析技巧。此外,文章还探讨了如何通过调整悬架系统的参数(如阻尼系数)来优化车辆的乘坐舒适性和行驶安全性。 适合人群:从事汽车动力学研究的专业人士、高校相关专业的学生以及对车辆悬架系统感兴趣的工程师。 使用场景及目标:①用于教学目的,帮助学生理解车辆悬架系统的理论知识;②用于科研实验,验证不同的悬架设计方案;③为企业产品研发提供技术支持,改进现有产品的性能。 其他说明:文中提供的代码片段和建模思路有助于读者快速上手并掌握Simulink建模技能。同时,强调了实际应用中的注意事项,如选择合适的求解器、处理代数环等问题。
内容概要:本文详细介绍了使用MATLAB进行语音数据处理的完整流程,涵盖从音频文件读取、特征提取(特别是梅尔倒谱系数MFCC)、分类器构建(支持向量机SVM)到最后的性能评估(混淆矩阵)。作者分享了许多实用技巧,如避免常见错误、优化特征提取参数以及提高分类准确性的方法。文中提供了大量具体代码示例,帮助读者快速理解和应用相关技术。 适合人群:对语音信号处理感兴趣的初学者或有一定经验的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解语音识别系统内部机制的人群,尤其是希望通过MATLAB平台实现简单而有效的语音分类任务的学习者。主要目的是掌握如何利用MATLAB工具箱完成从原始音频到分类结果可视化的全过程。 其他说明:除了介绍基本概念外,还强调了一些实践经验,例如预处理步骤的重要性、选择合适的滤波器数目、尝试不同的分类器配置等。此外,作者鼓励读者根据实际情况调整参数设置,以获得更好的实验效果。
基于python+yolov5和deepsort实现的行人或车辆跟踪计数系统+源码+项目文档+演示视频,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 项目运行环境:win10,pycharm,python3.6+ 主要需要的包:pytorch >= 1.7.0,opencv 运行main.py即可开始追踪检测,可以在控制台运行 基于python+yolov5和deepsort实现的行人或车辆跟踪计数系统+源码+项目文档+演示视频,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 项目运行环境:win10,pycharm,python3.6+ 主要需要的包:pytorch >= 1.7.0,opencv 运行main.py即可开始追踪检测,可以在控制台运行~
内容概要:本文详细介绍了金-氟化镁-金(MIM)结构在超表面全息领域的应用及其高效性能。首先探讨了MIM结构中磁偶极子模式的优势,特别是其低辐射损耗的特点。接着讨论了几何相位的应用,展示了纳米柱旋转角度与相位延迟之间的线性关系,并解决了相位误差的问题。随后介绍了改进的GS算法,提高了迭代收敛速度。最后,通过FDTD仿真验证了MIM结构的高效率,提供了详细的仿真参数设置和优化技巧。 适合人群:从事超表面研究、光学工程、纳米技术和FDTD仿真的研究人员和技术人员。 使用场景及目标:适用于希望深入了解MIM结构在超表面全息中的应用,以及希望通过FDTD仿真进行相关研究的专业人士。目标是提高超表面全息的转换效率,探索新的应用场景如涡旋光生成和偏振加密全息。 其他说明:文中提供了大量具体的代码片段和参数设置,帮助读者更好地理解和复现实验结果。此外,还提到了一些常见的仿真陷阱和解决方案,有助于避免常见错误并提升仿真准确性。
内容概要:文章介绍了金融科技公司信用飞如何通过关注用户信用成长,利用先进技术和专业服务为用户量身定制金融解决方案,从而实现用户资产的稳健增值。首先,信用飞通过多维度数据分析,全面了解用户的信用状况和需求,为不同信用水平的用户提供个性化服务。其次,建立了动态信用评估体系,实时监测并调整用户信用服务策略,帮助用户持续提升信用。再者,根据不同用户的需求,提供包括信用消费、理财投资、融资借贷等在内的多样化金融服务。最后,借助大数据、人工智能、区块链等技术手段,确保金融服务的安全可靠和高效便捷,持续陪伴用户实现信用与财富的双重增长。 适合人群:对个人信用管理有一定需求,希望通过科学金融规划实现资产稳健增值的个人及小微企业主。 使用场景及目标:①希望提升个人或企业信用评级的用户;②寻求合适金融产品和服务以优化财务管理的人群;③需要安全可靠的融资渠道支持业务发展的创业者和中小企业。 阅读建议:本文详细阐述了信用飞如何通过技术创新和个性化服务助力用户信用成长及资产增值,建议读者重点关注文中提到的技术应用和服务特色,结合自身情况思考如何更好地利用此类金融科技服务来优化个人或企业的财务状况。
少儿编程scratch项目源代码文件案例素材-AI战争.zip
内容概要:本文详细介绍了出口设备1200线体程序的配置与优化方法,涵盖PLC通讯控制、V90模块配置以及工艺对象与FB284的协同控制。文章强调了开源特性的优势,使得用户可以自由扩展和优化控制系统。主要内容包括:1) 出口设备1200线体程序的核心地位及其复杂控制逻辑;2) 多个PLC设备的通讯协作,确保数据可靠传输;3) V90模块的具体配置步骤,确保各模块稳定运行;4) 工艺对象与FB284的协同控制,避免逻辑冲突;5) 开源带来的便利性,便于用户进行功能扩展和学习;6) 实际应用中的优化措施,提高系统的运行效率。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是那些希望深入了解PLC通讯控制和V90伺服配置的人。 使用场景及目标:适用于需要配置和优化出口设备1200线体程序的实际工程项目,帮助用户掌握PLC通讯、V90配置及工艺对象与FB284协同控制的方法,从而提升生产线的效率和稳定性。 其他说明:文章提供了大量实用的代码片段和调试技巧,有助于读者更好地理解和实施相关配置。同时,文中提到的一些具体案例和经验分享也为实际操作提供了宝贵的参考。
前端面试与vue源码讲解
少儿编程scratch项目源代码文件案例素材-green vs blue.zip