- 浏览: 7339838 次
- 性别:
- 来自: 上海
文章分类
- 全部博客 (1546)
- 企业中间件 (236)
- 企业应用面临的问题 (236)
- 小布Oracle学习笔记汇总 (36)
- Spring 开发应用 (54)
- IBatis开发应用 (16)
- Oracle基础学习 (23)
- struts2.0 (41)
- JVM&ClassLoader&GC (16)
- JQuery的开发应用 (17)
- WebService的开发应用 (21)
- Java&Socket (44)
- 开源组件的应用 (254)
- 常用Javascript的开发应用 (28)
- J2EE开发技术指南 (163)
- EJB3开发应用 (11)
- GIS&Mobile&MAP (36)
- SWT-GEF-RCP (52)
- 算法&数据结构 (6)
- Apache开源组件研究 (62)
- Hibernate 学习应用 (57)
- java并发编程 (59)
- MySQL&Mongodb&MS/SQL (15)
- Oracle数据库实验室 (55)
- 搜索引擎的开发应用 (34)
- 软件工程师笔试经典 (14)
- 其他杂项 (10)
- AndroidPn& MQTT&C2DM&推技术 (29)
- ActiveMQ学习和研究 (38)
- Google技术应用开发和API分析 (11)
- flex的学习总结 (59)
- 项目中一点总结 (20)
- java疑惑 java面向对象编程 (28)
- Android 开发学习 (133)
- linux和UNIX的总结 (37)
- Titanium学习总结 (20)
- JQueryMobile学习总结 (34)
- Phonegap学习总结 (32)
- HTML5学习总结 (41)
- JeeCMS研究和理解分析 (9)
最新评论
-
lgh1992314:
[u][i][b][flash=200,200][url][i ...
看看mybatis 源代码 -
尼古拉斯.fwp:
图片根本就不出来好吧。。。。。。
Android文件图片上传的详细讲解(一)HTTP multipart/form-data 上传报文格式实现手机端上传 -
ln94223:
第一个应该用排它网关吧 怎么是并行网关, 并行网关是所有exe ...
工作流Activiti的学习总结(八)Activiti自动执行的应用 -
ZY199266:
获取不到任何消息信息,请问这是什么原因呢?
ActiveMQ 通过JMX监控Connection,Queue,Topic的信息 -
xiaoyao霄:
DestinationSourceMonitor 报错 应该导 ...
ActiveMQ 通过JMX监控Connection,Queue,Topic的信息
Lucene Hack之通过缩小搜索结果集来提升性能
作者:caocao(网络隐士),http://www.caocao.name,http://www.caocao.mobi
转载请注明来源:http://www.iteye.com/topic/78884
一、缘起
Lucene在索引文件上G之后的搜索性能下降很严重,随便跑个搜索就要上0.x秒。如果是单线程搜索那么性能尚可,总可以在0.x秒返回结果,如果是Web式的多线程访问,由于Lucene的内部机制导致数据被大量载入内存,用完后立即丢弃,随之引起JVM频繁GC,性能极其低下,1-10秒的长连接比比皆是。这也是世人为之诟病的Lucene应用瓶颈问题,那么是否有解决方法呢?
二、思路
我们来观察Google, Baidu的搜索,有一个总体的感觉就是搜索结果多的关键词耗时比较少,结果少的关键词耗时反而多,且结果多的时候会说“约******个结果”。隐士猜测Google, Baidu的算法是找到前n个结果后停止扫描索引,根据前n个结果来推断总共有多少个结果,此猜想可由Google, Baidu翻页限制而得到部分验证。
再看Lucene,其Hits.length()返回的总是精确的结果,如果可以让Lucene也返回模糊的结果,那么索引文件就算是10G也可以轻松应对了。
三、探索
隐士带着这个问题访名山、觅高人,可惜没有找到前人的成果,可能是隐士走的路不够勤,如有类似的解决方案,隐士不吝赐教。
无奈之下,隐士详细研究了Lucene 2.1.0源码,准备重新发明轮子。
一般来说大多数搜索应用中的Query都会落在BooleanQuery上,隐士就拿它开刀。一路看来,BooleanScorer2里的一个method吸引了隐士,代码如下:
代码
public void score(HitCollector hc) throws IOException {
if (countingSumScorer == null) {
initCountingSumScorer();
}
while (countingSumScorer.next()) {
hc.collect(countingSumScorer.doc(), score());
}
}
<script>render_code();</script>
在while循环里嵌入写日志代码可证结果集有多大,此处就循环了多少次。countingSumScorer.next()的意思是找到下一个符合boolean规则的document,找到后放入HitCollector,这HitCollector后面会换个马甲放在大家熟悉的Hits里面。
如果可以在这个while循环里嵌一个break,到一定数量就break出来,性能提升将相当明显。这个代码相当简单,果然大幅提高了性能,带来的副作用是结果不太准,这个可以通过调整业务模型、逻辑来修正。毕竟这是一条提升Lucene性能的有效方法。
细细想来,正是由于这个break会导致结果集大的关键词提前出来,搜索时间少,结果集小的关键词不可避免会走完整个索引,相应的搜索时间会长一点。
四、效果
由于具体嵌入代码的过程极其繁琐,隐士将在第二回详细讲解。这第一回先来个Big picture。
历尽千辛万苦,隐士终于搞定了这套程序,效果可以从隐士做的视频搜索http://so.mdbchina.com/video/%E7%BE%8E%E5%A5%B3看出。
这个关键词“美女”可以找到18万个视频,平均0.5秒返回结果,现在用上了新算法,只要0.06x秒返回结果,而且返回结果足够好了,估算的8.5万个结果虽然离18万有很大差距,不过由于是估算的,差2-3倍应属可以接受的。
由算法的特性可知,while里面的hc.collect总可以在常量时间内完成,循环次数又是<=常量,该算法的时间复杂度只和BooleanQuery的复杂程度相关,和索引文件大小以及命中的Document在索引文件内的分布密度没有关系,因为BooleanQuery的复杂程度决定了countingSumScorer.next()需要经过多少次判断、多少次读取索引文件,countingSumScorer.next()正是整个算法中耗时不定的部分。
现在这个视频搜索的索引文件接近3G,热门关键词可以在0.0x秒返回结果,隐士相信即使以后索引文件上到10G,依然可以在0.0x秒返回结果。
五、原则
1、不改动lucene-core的代码
肆意改动lucene-core的代码实在是很不道德的事情,而且会导致后期维护升级的大量问题。如果真的有这等迫切需求,还不如加入lucene开发组,尽一份绵薄之力。看官说了,隐士你怎么不去啊,唉,代码比较丑陋,没脸去人家那里,后文详述。
2、不改动lucene索引文件格式
道理同上。
3、替换常规搜索的接口尽量少
这样可以方便来回切换标准搜索和这个搜索,减小代码修改、维护的成本。
4、命名规范
所有增加的类名均以Inaccurate开头,其余遵循lucene命名规范。
六、限制
1、隐士只做了BooleanWeight2的替代品,如果Weight不是BooleanWeight2,则等同于常规搜索。
2、如果搜索结果集小于等于最大允许的结果集,则等同于常规搜索。
七、文件
代码
org.apache.lucene.search
InaccurateBooleanScorer2.java // BooleanScorer2的替代品
InaccurateBooleanWeight2.java // BooleanWeight2的替代品
InaccurateHit.java // Hit的替代品
InaccurateHitIterator.java // HitIterator的替代品
InaccurateHits.java // Hits的替代品
InaccurateIndexSearcher.java // IndexSearcher的替代品
org.apache.lucene.util
InaccurateResultAggregation.java // 放搜索统计信息的value object
<script>render_code();</script>
八、实战
1、InaccurateIndexSearcher
InaccurateIndexSearcher extends IndexSearcher,结构很简单,增加了两个成员变量:maxNumberOfDocs和inaccurateResultAggregation,以及几个methods。
丑陋的部分来了:
代码
public void search(Weight weight, Filter filter, final HitCollector results, boolean ascending) throws IOException {
...
if (weight.getClass().getSimpleName().equals("BooleanWeight2")) { // hook BooleanWeight2
InaccurateBooleanWeight2 inaccurateBooleanWeight2 = new InaccurateBooleanWeight2(
this, weight.getQuery());
float sum = inaccurateBooleanWeight2.sumOfSquaredWeights();
float norm = this.getSimilarity().queryNorm(sum);
inaccurateBooleanWeight2.normalize(norm); // bad smell
InaccurateBooleanScorer2 inaccurateBooleanScorer2 = inaccurateBooleanWeight2
.getInaccurateBooleanScorer2(reader, maxNumberOfDocs);
if (inaccurateBooleanScorer2 != null) {
inaccurateResultAggregation = inaccurateBooleanScorer2
.getInaccurateTopAggregation(collector, ascending);
}
} else {
Scorer scorer = weight.scorer(reader);
if (scorer != null) {
scorer.score(collector);
}
}
...
}
<script>render_code();</script>
由于BooleanWeight2被lucene-core给藏起来了,instanceof都不能用,只好丑陋一把用weight.getClass().getSimpleName().equals("BooleanWeight2")。
把BooleanWeight2替换为InaccurateBooleanWeight2后代码老是搜不到任何结果,经过千辛万苦地调试才发现BooleanWeight2初始化后并不算完,需要拿到sum、norm,然后normalize一把,有点bad smell。
接着从InaccurateBooleanWeight2里拿到InaccurateBooleanScorer2,调用getInaccurateTopAggregation搜一把,这里ascending并没有发挥作用,原因相当复杂,隐士引入ascending的本意是调整lucene扫描索引的方式,docID小->大或docID大->小,后来调整了建索引的方式就不需要这个了,所以隐士只是留这个接口以后用,万一以后lucene-core支持双向扫描索引即可启用。
2、InaccurateHits
InaccurateIndexSearcher里面调用search其实是调用new InaccurateHits(this, query, null, sort, ascending)。getMoreDocs会反向调用新写的search方法。
上代码:
代码
...
TopDocs topDocs = (sort == null) ? searcher.search(weight, filter, n,
ascending) : searcher
.search(weight, filter, n, sort, ascending);
length = topDocs.totalHits;
InaccurateResultAggregation inaccurateResultAggregation = searcher
.getInaccurateResultAggregation();
if (inaccurateResultAggregation == null) {
totalLength = length;
} else {
accurate = inaccurateResultAggregation.isAccurate();
if (inaccurateResultAggregation.isAccurate()) {
totalLength = inaccurateResultAggregation
.getNumberOfRecordsFound();
} else {
int maxDocID = searcher.maxDoc();
totalLength = 1000 * ((int) Math
.ceil((0.001
* maxDocID
/ (inaccurateResultAggregation.getLastDocID() + 1) * inaccurateResultAggregation
.getNumberOfRecordsFetched()))); // guessing how many records there are
}
}
...
<script>render_code();</script>
代码没什么特别的,除了一个猜测记录总数的算法。lucene从docID小向大的扫,由于上回说了扫到一半会跳出来,那么由最后扫到的lastDocID和maxDocID的比例可以猜测总共有多少条记录,虽然不是很准,但是数量级的精度是可以保证的,反正一般用户只能看到前1000条记录,具体有多少对用户来说不过是过眼云烟。
3、InaccurateBooleanWeight2
InaccurateBooleanWeight2没什么好说的,就是个拿到InaccurateBooleanScorer2的跳板。
4、InaccurateBooleanScorer2
InaccurateBooleanScorer2的代码均来自BooleanScorer2,由于BooleanScorer2从设计上来说并不准备被继承,隐士只好另起炉灶,bad smell啊。隐士没有修改任何从BooleanScorer2过来的代码,只加了getMaxNumberOfDocs、getInaccurateTopAggregation、getAccurateBottomAggregation。getInaccurateTopAggregation是扫描到maxNumberOfDocs后立即跳出来,所以结果会有所不准,getAccurateBottomAggregation总是保留最后maxNumberOfDocs个结果,结果也会有所不准,但是统计值是准的,因为每次都走完了所有索引。由两者差异可知getAccurateBottomAggregation性能会差一点,准确性和性能不可兼得啊。
代码
public InaccurateResultAggregation getInaccurateTopAggregation(
HitCollector hc, boolean ascending) throws IOException {
// DeltaTime dt = new DeltaTime();
if (countingSumScorer == null) {
initCountingSumScorer();
}
int lastDocID = 0;
boolean reachedTheEnd = true;
int numberOfRecordsFetched = 0;
while (countingSumScorer.next()) {
lastDocID = countingSumScorer.doc();
float score = score();
hc.collect(lastDocID, score);
numberOfRecordsFetched++;
if (numberOfRecordsFetched >= maxNumberOfDocs) {
reachedTheEnd = !countingSumScorer.next();
break;
}
}
// System.out.println(dt.getTimeElasped());
/*
* This method might cast the rest away. So it might be inaccurate.
*/
return new InaccurateResultAggregation(lastDocID, ascending,
reachedTheEnd, numberOfRecordsFetched, numberOfRecordsFetched);
}
public InaccurateResultAggregation getAccurateBottomAggregation(
HitCollector hc, boolean ascending) throws IOException {
// DeltaTime dt = new DeltaTime();
if (countingSumScorer == null) {
initCountingSumScorer();
}
LinkedList resultNodes = new LinkedList();
boolean isFull = false;
int lastDocID = 0;
int index = 0;
int numberOfRecordsFound = 0;
while (countingSumScorer.next()) {
lastDocID = countingSumScorer.doc();
float score = score();
resultNodes.add(new ResultNode(lastDocID, score));
if (isFull) {
resultNodes.removeFirst();
}
index++;
numberOfRecordsFound++;
if (index >= maxNumberOfDocs) {
isFull = true;
index = 0;
// break;
}
}
for (ResultNode resultNode : resultNodes) {
hc.collect(resultNode.getDoc(), resultNode.getScore());
}
// System.out.println(dt.getTimeElasped());
/*
* Since this method runs full scan against all matched docs, it's
* accurate at all.
*/
return new InaccurateResultAggregation(lastDocID, ascending, true,
resultNodes.size(), numberOfRecordsFound);
}
<script>render_code();</script>
九、总结
代码已经打包上传了,有隐士写的简略注释,调用方式写在readme.txt里面,只需要替换几行代码即可。
总的来说只要
1、将Searcher searcher = new IndexSearcher(reader);替换为InaccurateIndexSearcher searcher = new InaccurateIndexSearcher(reader, 5000);
2、将Hits hits = searcher.search(query);替换为InaccurateHits hits = searcher.search(query, sort, ascending);
就行了。欢迎大家试用,如果有什么改进,请务必把改进后的代码也开源给大家,互相学习,互相促进。
由于代码里面有几处有bad smell,隐士实在没脸去lucene开发组那里喊一嗓子。
发表评论
-
Lucene全文搜索框架
2009-11-09 17:16 36171 lucene简介 1.1 什么是luc ... -
compass的开发應用JPA+Compass整合
2009-10-10 17:21 2505查询结果的高亮显示: 采用的是JPA的注解方式, 首 ... -
Compass 實用中扩展應用
2009-10-10 14:12 29301 Compass中的操作通过CompassSession我 ... -
Spring ,JPA,Compass使用注解开发的博客站内搜索
2009-10-10 12:54 3923当一个网 ... -
Web搜索引擎技术
2009-09-25 13:38 2662一、Web搜索引擎技术综 ... -
搜索引擎技术原理
2009-09-25 13:37 2640一、搜索引擎的分类 ... -
搜索计算的规则
2009-05-15 10:28 2191面向Web应用的网页预处理2003年12月3日(讲稿由张志刚协 ... -
用 Lucene 加速 Web 搜索应用程序的开发
2009-05-02 09:18 20382006 年 9 月 06 日 Lucene 是基于 Jav ... -
用 Lucene 加速 Web 搜索应用程序的开发
2009-05-02 09:17 18342006 年 9 月 06 日 Lucene 是基于 Jav ... -
搜索引擎基本工作原理
2009-05-02 07:48 2056搜索引擎基本工作原理 了解搜索引擎的工作原理对我们 ... -
搜索引擎蜘蛛工作原理
2009-05-02 07:46 2586网站能在搜索引擎被搜 ... -
luence学习的指南文档(五)
2009-03-17 17:00 26696.搜索引擎的性能考虑信息: 索引数字:针对数字的检索 ... -
luence学习的指南文档(三)
2009-03-17 16:58 22723. 使用场合:多个搜索引擎查询的数据结果的合并信息操作:添 ... -
luence学习的指南文档
2009-03-17 16:56 29772.代码使用场合:在搜索引擎检索索引目录的中的信息 /** ... -
luence学习的指南文档
2009-03-17 16:54 2226搜索引擎学习总结(实战和使用场合) 备注以下代码使用的环境为 ... -
揭开神秘面纱,搜索引擎原理浅析
2009-03-17 16:10 1927在浩如烟海的Internet上,特别是其上的Web(World ... -
lucene全文检索应用示例及代码简析
2009-03-17 16:02 2142Lucene是apache软件基金会 jakarta项目组 ... -
关于lucene的学习笔记liui :转关于luncene 内层的研究
2009-03-17 15:59 2423现在已经不用去研究那些代码,但还是分享出来给大家以帮助。谢谢1 ... -
lucene大数据量的动态更新问题解决方式. 用内存
2009-03-17 15:55 4681问题: 目前索引里面已经有1000多万的数据了,现在需要每几分 ... -
lucene 自定义SORT
2009-03-17 15:54 3238如欲转载,请注明作者 ...
相关推荐
基于智能温度监测系统设计.doc
包括userCF,itemCF,MF,LR,POLY2,FM,FFM,GBDT+LR,阿里LS-PLM 基于深度学习推荐系统(王喆)
2023-04-06-项目笔记-第三百五十五阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.353局变量的作用域_353- 2024-12-22
和美乡村城乡融合发展数字化解决方案.docx
基于Python的深度学习图像识别系统是一个利用卷积神经网络(CNN)对图像进行分类的先进项目。该项目使用Python的深度学习库,如TensorFlow,构建和训练一个模型,能够自动识别和分类图像中的对象。系统特别适合于图像处理领域的研究和实践,如计算机视觉、自动驾驶、医疗影像分析等。 项目的核心功能包括数据预处理、模型构建、训练、评估和预测。用户可以上传自己的图像或使用预定义的数据集进行训练。系统提供了一个直观的界面,允许用户监控训练进度,并可视化模型的性能。此外,系统还包括了一个模型优化模块,通过调整超参数和网络结构来提高识别准确率。 技术层面上,该项目使用了Python编程语言,并集成了多个流行的机器学习库,如NumPy、Pandas、Matplotlib等,用于数据处理和可视化。模型训练过程中,系统会保存训练好的权重,以便后续进行模型评估和预测。用户可以通过简单的API调用,将新的图像输入到训练好的模型中,获取预测结果。
拳皇97.exe拳皇972.exe拳皇973.exe
基于python和协同过滤算法的电影推荐系统 基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法的电影推荐系统基于python和协同过滤算法
DEV-CPP-RED-PANDA
Python语言求解旅行商问题,算法包括禁忌搜索、蚁群算法、模拟退火算法等。
pdfjs 用于在浏览器中查看/预览/打印pdf。 pdfjs 2.5.207 支持firefox/chrome/edge/ie11以上版本。 如果需要支持旧版本浏览器,可以使用这个,是未修改过的原版,支持打印和下载按钮。亲测有效。 pdf 4.9.155分两个包: pdfjs-4.9.155-dist.zip pdfjs-4.9.155-legacy-dist.zip
建设项目现场高温人员中暑事故应急预案
数据结构上机实验大作业-线性表选题.zip
【资源说明】 基于高德地图的校园导航全部资料+详细文档+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【静态站群程序视频演示,只有视频,不含程序,下载须知】【静态站群程序视频演示,只有视频,不含程序,下载须知】全自动批量建站快速养权重站系统【纯静态html站群版】:(GPT4.0自动根据关键词写文章+自动发布+自定义友链+自动文章内链+20%页面加提权词)
9.30 SWKJ 男头7张+女头2张.zip
项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea、vscode 数据库:MySql5.7以上 部署环境:maven 数据库工具:navicat
一个通过单片机在各种屏幕上显示中文的解决方案.7z
图像
一、用户管理功能 用户注册与登录 学生注册:学生可以通过手机号、邮箱、社交账号等方式注册,填写个人信息(如姓名、年龄、学校等)。 家长/监护人账户:支持家长/监护人注册并管理学生账户,查看学习进度和成绩。 教师账户:教师可以注册并设置个人资料,上传资质认证文件。 管理员账户:管理员负责整个系统的管理,包括用户管理、课程管理、平台设置等。 用户权限管理 角色权限:系统根据用户类型(学生、家长、教师、管理员)分配不同权限,确保信息安全。 家长监督:家长可以查看子女的学习进度、成绩和教师反馈,参与学习监督。 个人资料管理 用户可以在个人中心更新基本信息,设置个人头像、联系方式、密码等。 支持学籍信息的维护,例如学生的年级、班级、课程历史等。 二、课程管理功能 课程设置 课程创建与编辑:教师或管理员可以创建和编辑课程内容,上传课件、视频、文档等教学材料。 课程分类:根据学科、年级、难度等维度进行课程分类,方便学生浏览和选择。 课程排课:管理员可以设置课程的时间表、教学内容和授课教师,并调整上课时间和频率。 课程安排与通知 课程预约:学生可以在线选择并预约感兴趣的课程,系统根据学生的时
内容概要:本文档介绍了英特尔2021年至2024年的网络连接性产品和智能处理单元(IPU)的战略和技术路线图。涵盖了从10GbE到200GbE的不同系列以太网适配器的特性、性能和发布时间。详细列出了各个产品的关键功能,如PCIe接口、安全特性、RDMA支持等。同时,介绍了IPU的发展计划,包括200G、400G和800G的不同代次产品的性能提升和新的功能特点。 适合人群:从事网络工程、数据中心管理、IT架构设计的专业技术人员。 使用场景及目标:本文档主要用于了解英特尔未来几年在以太网适配器和IPU领域的技术和产品规划,帮助企业在采购和部署网络设备时做出决策。同时,为研究人员提供最新技术发展趋势的参考。 其他说明:文档内容涉及的技术细节和时间表可能会有变动,请以英特尔官方发布的最新信息为准。