测试说明
写2G文件,分批次写入,每批次写入128MB;
分别在Win7系统(3G内存,双核,32位,T系列处理器)和MacOS系统(8G内存,四核,64位,i7系列处理器)下运行测试。理论上跟硬盘类型和配置也有关系,这里不再贴出了。
测试代码
package rwbigfile;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.lang.reflect.Method;
import java.nio.ByteBuffer;
import java.nio.MappedByteBuffer;
import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.channels.FileChannel.MapMode;
import java.nio.channels.ReadableByteChannel;
import java.security.AccessController;
import java.security.PrivilegedAction;
import util.StopWatch;
/**
* NIO写大文件比较
* @author Will
*
*/
public class WriteBigFileComparison {
// data chunk be written per time
private static final int DATA_CHUNK = 128 * 1024 * 1024;
// total data size is 2G
private static final long LEN = 2L * 1024 * 1024 * 1024L;
public static void writeWithFileChannel() throws IOException {
File file = new File("e:/test/fc.dat");
if (file.exists()) {
file.delete();
}
RandomAccessFile raf = new RandomAccessFile(file, "rw");
FileChannel fileChannel = raf.getChannel();
byte[] data = null;
long len = LEN;
ByteBuffer buf = ByteBuffer.allocate(DATA_CHUNK);
int dataChunk = DATA_CHUNK / (1024 * 1024);
while (len >= DATA_CHUNK) {
System.out.println("write a data chunk: " + dataChunk + "MB");
buf.clear(); // clear for re-write
data = new byte[DATA_CHUNK];
for (int i = 0; i < DATA_CHUNK; i++) {
buf.put(data[i]);
}
data = null;
buf.flip(); // switches a Buffer from writing mode to reading mode
fileChannel.write(buf);
fileChannel.force(true);
len -= DATA_CHUNK;
}
if (len > 0) {
System.out.println("write rest data chunk: " + len + "B");
buf = ByteBuffer.allocateDirect((int) len);
data = new byte[(int) len];
for (int i = 0; i < len; i++) {
buf.put(data[i]);
}
buf.flip(); // switches a Buffer from writing mode to reading mode, position to 0, limit not changed
fileChannel.write(buf);
fileChannel.force(true);
data = null;
}
fileChannel.close();
raf.close();
}
/**
* write big file with MappedByteBuffer
* @throws IOException
*/
public static void writeWithMappedByteBuffer() throws IOException {
File file = new File("e:/test/mb.dat");
if (file.exists()) {
file.delete();
}
RandomAccessFile raf = new RandomAccessFile(file, "rw");
FileChannel fileChannel = raf.getChannel();
int pos = 0;
MappedByteBuffer mbb = null;
byte[] data = null;
long len = LEN;
int dataChunk = DATA_CHUNK / (1024 * 1024);
while (len >= DATA_CHUNK) {
System.out.println("write a data chunk: " + dataChunk + "MB");
mbb = fileChannel.map(MapMode.READ_WRITE, pos, DATA_CHUNK);
data = new byte[DATA_CHUNK];
mbb.put(data);
data = null;
len -= DATA_CHUNK;
pos += DATA_CHUNK;
}
if (len > 0) {
System.out.println("write rest data chunk: " + len + "B");
mbb = fileChannel.map(MapMode.READ_WRITE, pos, len);
data = new byte[(int) len];
mbb.put(data);
}
data = null;
unmap(mbb); // release MappedByteBuffer
fileChannel.close();
}
public static void writeWithTransferTo() throws IOException {
File file = new File("e:/test/transfer.dat");
if (file.exists()) {
file.delete();
}
RandomAccessFile raf = new RandomAccessFile(file, "rw");
FileChannel toFileChannel = raf.getChannel();
long len = LEN;
byte[] data = null;
ByteArrayInputStream bais = null;
ReadableByteChannel fromByteChannel = null;
long position = 0;
int dataChunk = DATA_CHUNK / (1024 * 1024);
while (len >= DATA_CHUNK) {
System.out.println("write a data chunk: " + dataChunk + "MB");
data = new byte[DATA_CHUNK];
bais = new ByteArrayInputStream(data);
fromByteChannel = Channels.newChannel(bais);
long count = DATA_CHUNK;
toFileChannel.transferFrom(fromByteChannel, position, count);
data = null;
position += DATA_CHUNK;
len -= DATA_CHUNK;
}
if (len > 0) {
System.out.println("write rest data chunk: " + len + "B");
data = new byte[(int) len];
bais = new ByteArrayInputStream(data);
fromByteChannel = Channels.newChannel(bais);
long count = len;
toFileChannel.transferFrom(fromByteChannel, position, count);
}
data = null;
toFileChannel.close();
fromByteChannel.close();
}
/**
* 在MappedByteBuffer释放后再对它进行读操作的话就会引发jvm crash,在并发情况下很容易发生
* 正在释放时另一个线程正开始读取,于是crash就发生了。所以为了系统稳定性释放前一般需要检
* 查是否还有线程在读或写
* @param mappedByteBuffer
*/
public static void unmap(final MappedByteBuffer mappedByteBuffer) {
try {
if (mappedByteBuffer == null) {
return;
}
mappedByteBuffer.force();
AccessController.doPrivileged(new PrivilegedAction<Object>() {
@Override
@SuppressWarnings("restriction")
public Object run() {
try {
Method getCleanerMethod = mappedByteBuffer.getClass()
.getMethod("cleaner", new Class[0]);
getCleanerMethod.setAccessible(true);
sun.misc.Cleaner cleaner =
(sun.misc.Cleaner) getCleanerMethod
.invoke(mappedByteBuffer, new Object[0]);
cleaner.clean();
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("clean MappedByteBuffer completed");
return null;
}
});
} catch (Exception e) {
e.printStackTrace();
}
}
public static void main(String[] args) throws IOException {
StopWatch sw = new StopWatch();
sw.startWithTaskName("write with file channel's write(ByteBuffer)");
writeWithFileChannel();
sw.stopAndPrint();
sw.startWithTaskName("write with file channel's transferTo");
writeWithTransferTo();
sw.stopAndPrint();
sw.startWithTaskName("write with MappedByteBuffer");
writeWithMappedByteBuffer();
sw.stopAndPrint();
}
}
测试结果(Y轴是耗时秒数)
-
显然writeWithMappedByteBuffer方式性能最好,且在硬件配置较高情况下优势越加明显
-
在硬件配置较低情况下,writeWithTransferTo比writeWithFileChannel性能稍好
-
在硬件配置较高情况下,writeWithTransferTo和writeWithFileChannel的性能基本持平
-
此外,注意writeWithMappedByteBuffer方式除了占用JVM堆内存外,还要占用额外的native内存(Direct Byte Buffer内存)
内存映射文件使用经验
-
MappedByteBuffer需要占用“双倍”的内存(对象JVM堆内存和Direct Byte Buffer内存),可以通过-XX:MaxDirectMemorySize参数设置后者最大大小
-
不要频繁调用MappedByteBuffer的force()方法,因为这个方法会强制OS刷新内存中的数据到磁盘,从而只能获得些微的性能提升(相比IO方式),可以用后面的代码实例进行定时、定量刷新
-
如果突然断电或者服务器突然Down,内存映射文件数据可能还没有写入磁盘,这时就会丢失一些数据。为了降低这种风险,避免用MappedByteBuffer写超大文件,可以把大文件分割成几个小文件,但不能太小(否则将失去性能优势)
-
ByteBuffer的rewind()方法将position属性设回为0,因此可以重新读取buffer中的数据;limit属性保持不变,因此可读取的字节数不变
-
ByteBuffer的flip()方法将一个Buffer由写模式切换到读模式
-
ByteBuffer的clear()和compact()可以在我们读完ByteBuffer中的数据后重新切回写模式。不同的是clear()会将position设置为0,limit设为capacity,换句话说Buffer被清空了,但Buffer内的数据并没有被清空。如果Buffer中还有未被读取的数据,那调用clear()之后,这些数据会被“遗忘”,再写入就会覆盖这些未读数据。而调用compcat()之后,这些未被读取的数据仍然可以保留,因为它将所有还未被读取的数据拷贝到Buffer的左端,然后设置position为紧随未读数据之后,limit被设置为capacity,未读数据不会被覆盖
定时、定量刷新内存映射文件到磁盘
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
public class MappedFile {
// 文件名
private String fileName;
// 文件所在目录路径
private String fileDirPath;
// 文件对象
private File file;
private MappedByteBuffer mappedByteBuffer;
private FileChannel fileChannel;
private boolean boundSuccess = false;
// 文件最大只能为50MB
private final static long MAX_FILE_SIZE = 1024 * 1024 * 50;
// 最大的脏数据量512KB,系统必须触发一次强制刷
private long MAX_FLUSH_DATA_SIZE = 1024 * 512;
// 最大的刷间隔,系统必须触发一次强制刷
private long MAX_FLUSH_TIME_GAP = 1000;
// 文件写入位置
private long writePosition = 0;
// 最后一次刷数据的时候
private long lastFlushTime;
// 上一次刷的文件位置
private long lastFlushFilePosition = 0;
public MappedFile(String fileName, String fileDirPath) {
super();
this.fileName = fileName;
this.fileDirPath = fileDirPath;
this.file = new File(fileDirPath + "/" + fileName);
if (!file.exists()) {
try {
file.createNewFile();
} catch (IOException e) {
e.printStackTrace();
}
}
}
/**
*
* 内存映照文件绑定
* @return
*/
public synchronized boolean boundChannelToByteBuffer() {
try {
RandomAccessFile raf = new RandomAccessFile(file, "rw");
this.fileChannel = raf.getChannel();
} catch (Exception e) {
e.printStackTrace();
this.boundSuccess = false;
return false;
}
try {
this.mappedByteBuffer = this.fileChannel
.map(FileChannel.MapMode.READ_WRITE, 0, MAX_FILE_SIZE);
} catch (IOException e) {
e.printStackTrace();
this.boundSuccess = false;
return false;
}
this.boundSuccess = true;
return true;
}
/**
* 写数据:先将之前的文件删除然后重新
* @param data
* @return
*/
public synchronized boolean writeData(byte[] data) {
return false;
}
/**
* 在文件末尾追加数据
* @param data
* @return
* @throws Exception
*/
public synchronized boolean appendData(byte[] data) throws Exception {
if (!boundSuccess) {
boundChannelToByteBuffer();
}
writePosition = writePosition + data.length;
if (writePosition >= MAX_FILE_SIZE) { // 如果写入data会超出文件大小限制,不写入
flush();
writePosition = writePosition - data.length;
System.out.println("File="
+ file.toURI().toString()
+ " is written full.");
System.out.println("already write data length:"
+ writePosition
+ ", max file size=" + MAX_FILE_SIZE);
return false;
}
this.mappedByteBuffer.put(data);
// 检查是否需要把内存缓冲刷到磁盘
if ( (writePosition - lastFlushFilePosition > this.MAX_FLUSH_DATA_SIZE)
||
(System.currentTimeMillis() - lastFlushTime > this.MAX_FLUSH_TIME_GAP
&& writePosition > lastFlushFilePosition) ) {
flush(); // 刷到磁盘
}
return true;
}
public synchronized void flush() {
this.mappedByteBuffer.force();
this.lastFlushTime = System.currentTimeMillis();
this.lastFlushFilePosition = writePosition;
}
public long getLastFlushTime() {
return lastFlushTime;
}
public String getFileName() {
return fileName;
}
public String getFileDirPath() {
return fileDirPath;
}
public boolean isBundSuccess() {
return boundSuccess;
}
public File getFile() {
return file;
}
public static long getMaxFileSize() {
return MAX_FILE_SIZE;
}
public long getWritePosition() {
return writePosition;
}
public long getLastFlushFilePosition() {
return lastFlushFilePosition;
}
public long getMAX_FLUSH_DATA_SIZE() {
return MAX_FLUSH_DATA_SIZE;
}
public long getMAX_FLUSH_TIME_GAP() {
return MAX_FLUSH_TIME_GAP;
}
}
相关推荐
相较于传统的Java IO,NIO具有更高的性能和更丰富的功能,尤其适合处理大文件或高并发场景。 #### 二、Java NIO关键组件 Java NIO的核心组件包括: - **Channels**:用于表示IO源或目标的一个连接点。 - **Buffers*...
本篇将详细探讨Java NIO在写文件方面的应用。 1. **通道(Channels)** 在Java NIO中,数据的读取和写入都是通过通道(Channel)进行的。通道可以理解为连接到I/O设备的桥梁,例如文件、网络套接字等。要使用NIO写...
在这个主题中,我们将深入探讨Java NIO如何用于写文件,特别是在处理大数据文件时如何提高性能。 首先,理解Java NIO的基本概念非常重要。NIO中的“N”代表“非阻塞”,这意味着在进行I/O操作时,程序可以继续执行...
在本篇文章中,我们将深入探讨Java NIO如何读取文件。 一、NIO的基本概念 1. 缓冲区(Buffer):NIO的核心组件,用于存储数据。Java提供了多种Buffer类,如ByteBuffer、CharBuffer、IntBuffer等,分别对应不同数据...
本类,是专门为了处理大文件,按行读取开发的类。 采用读文件的缓存 fbb 1024*5 行缓存 bb 256 字节 设计思想: 每次通过nio读取字节到 fbb中 然后对fbb自己中的内容进行行判断即 10 回车 13 行号 0 文件结束 ...
PFT(可能指的是文件传输或处理服务)在本场景中可能是通过JAVA NIO实现的一个功能模块,用于提供文件的上传、下载和列表展示服务。 文件服务是任何应用程序中不可或缺的部分,尤其是在Web环境中。在JAVA NIO中,...
本类,是专门为了处理大文件,按行读取开发的类。 采用读文件的缓存 fbb 1024*5 行缓存 bb 256 字节 设计思想: 每次通过nio读取字节到 fbb中 然后对fbb自己中的内容进行行判断即 10 回车 13 行号 0 文件...
Java NIO支持多种类型的通道,包括文件通道(FileChannel)、套接字通道(SocketChannel)和服务器套接字通道(ServerSocketChannel)等。通道可以同时进行读写操作,并且可以实现异步读写。 2. **缓冲区(Buffers...
`NIOServer.java`和`NIOClient.java`这两个文件很可能是用于演示Java NIO服务器端和客户端的基本操作。下面将详细介绍Java NIO的主要组件和工作原理,并结合这两个文件名推测它们可能包含的内容。 1. **Selector...
本项目“Large-File-Processing-master_javanio_java大文件处理_”显然专注于通过Java NIO实现大文件处理,下面我们将详细探讨相关的知识点。 1. **Java NIO基础**:NIO的核心组件包括通道(Channels)、缓冲区...
为了解决这个问题,Java引入了New Input/Output (NIO) 模型,它提供了非阻塞I/O操作,使得在处理大文件时更加高效。本文将深入探讨如何使用NIO处理大文件,并分析其背后的机制和优势。 1. NIO简介: NIO是Java 1.4...
这个文件很可能是一个示例程序,演示了如何使用Java NIO进行高效的大文件复制。在传统的Java I/O中,我们通常使用InputStream和OutputStream进行文件复制,而这种方式需要不断读写,造成大量的上下文切换,效率较低...
NIO在Java 1.4版本引入,提供了更高效的数据处理和通道通信方式,特别适用于高并发、大数据量的系统。Netty是一个基于NIO的高性能、异步事件驱动的网络应用框架,它简化了网络编程,广泛应用于服务器端应用开发。 ...
简单的用Java的NIO读取文件的程序,给大家参考。
Java NIO(New IO)是Java 1.4引入的一个新特性,它是对传统IO模型的重大改进,提供了更高效的数据处理方式。NIO的核心概念包括通道(Channels)、缓冲区(Buffers)和选择器(Selectors)。它允许多个输入/输出操作...
使用MappedByteBuffer,NIO可以将文件映射到内存,使得文件操作如同操作内存一样快速,特别适合大数据处理。 在实际应用中,Java NIO通常用于高性能的服务器编程,例如在开发聊天服务器、Web服务器或游戏服务器时...