《FilthyRichClients》读书笔记-SwingのEDT
《FilthyRichClients》读完了前几个章节,现将我的体会结合工作以来从事Swing桌面开发的经验,对本书的一些重要概念进行一次分析,对书中的一些遗漏与模糊的地方及时补充,同时使读者消除长期以来“Swing性能低、界面丑陋”诸如此类的旧观念。读书笔记仅谈谈我对Swing的理解,难免会犯错误,还望广大读者指教。
书中第二章-Swing渲染基本原理 中对Swing的线程做了系统地介绍。相比其他同类Swing教程,已经讲得非常深入了。但是如果读者之前对线程的掌握程度有限,尤其是编写代码比较随意的coder们,动辄就大量编写类似下面这样的代码:
jButton1.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e) {
// TODO
}
});
这样的代码可能是netBeans这样的工具生成的“杰作”。但是如果这个人再懒惰一点,可能会直接在TODO下面写上长长一堆代码,还伴随着不可预知的 I/O操作,很多人指责界面被僵住是Swing性能的问题。在新式的JDK中,Swing已经在性能方面改进了很多,完全可以这么说:与应用程序自身的业务计算相比,界面上的耗时可以忽略。但是如果上述恶习改不掉的话,Swing永远“快”不起来,SWT也同样如此,因为它们都是单线程图形工具包。
书上有这样一段话:“EventQueue的派发机制由单独的一个线程管理,这个线程称为事件派发线程(EDT)”。和其他很多桌面API一样,Swing将GUI请求放入一个事件队列中执行。如果不明白什么是事件队列、EDT,它们是如何运作的,那么首先必须澄清四个重要的概念:分别是同步与异步、串行与并行、生产者消费者模式、事件队列。(不同领域串行与并行的含义可能是不同的)
同步与异步:同步是程序在发起请求后开始处理事件并等待处理的结果或等待请求执行完毕,在此之前程序被block住直到请求完成。而异步是当前程序发起请求后立即返回,当前程序不会立即处理该事件并等待处理的结果,请求是在稍后的某一时间才被处理。
串行与并行:所谓串行是指多个要处理请求顺序执行,处理完一个再处理下一个;并行可以理解为并发,是同时处理多个请求(实际上我们只能理解为是这样,特别是CPU数目少于线程数的机器而言,真正意义的并发是不存在的,各个线程只是断断续续地交替地执行)。下图演示了串行与并行的机制。可以这么说,在引入多线程之前,对于同一进程或者程序而言执行的都是串行操作。
串行:
并行:
生产者/消费者模式:可以想象这样一副场景,某车间的一条传送带,有一个或多个入口不断产生待加工的货物,这种不断产生货物的称为生产者;传送带的末端是一个或多个工人在加工货物,称作消费者。有时由于传送带上没有足够的货物使得某一工人暂时空闲,有时又由于部分货物需加工的时间较长出现传送带上待加工的货物堆积。
如果用Java实现一个简单的生产者消费者模型,利用线程的等待/通知机制很容易实现。给出最基本的同步队列的参考实现
public class SyncQueue {
private List buffer = new ArrayList();
public synchronized Object pop() {
Object e;
while (buffer.size() == 0) {
try {
wait();
} catch (InterruptedException e1) {
// ignore it
}
}
e = buffer.remove(0);
return e;
}
public synchronized void push(Object e) {
notifyAll();
buffer.add(e);
}
}
在JDK 5中新出现了许多具有并发性的数据结构在java.util.concurrent包中,它们适合于特殊的场合,本帖不作解释。
事件队列:在计算机数据结构中,队列是一个特殊的数据结构。其一、它是线性的;其二、元素是先进先出的,也就是说进入队列的元素必须从末端进入,先入队的元素先得到执行,后入队的元素等待前面的元素执行完毕出队后才能执行,队列的处理方式是执行完一个再执行下一个。队列与线程安全是两个不同的概念,如果要将队列加上线程安全的特性,只需要仿照上述生产者/消费者加上线程的等待/通知即可。
而Swing的事件队列就类似(基本原理相似,但是Swing内部实现会做些优化)于上述的事件队列,说它是单线程图形工具包指的是仅有单一消费者,也就是常说的事件分发线程(EDT),一般来讲,除非你的应用程序停止,否则EDT会永不间断地徘徊在处理请求与等待请求之间。下图是Swing事件队列的实现机制:
很显然,如果在加工某一个货物上花费很长的时间,那么后续的货物只好等待。对于单一线程的事件队列来说有两个非常突出的特性:一、将同步操作转为异步操作。二、将并行处理转换为串行顺序处理。
如果你能理解上述图,那么你就应该意识到:EDT要处理所有GUI操作,它是职责分明且非常忙碌的。也就是说你要记住两条原则:一、职责分明,任何GUI请求都应该在EDT中调用。二、需要处理的GUI请求非常多,包括窗口移动、组件自动重绘、刷新,它很忙,所以任何与GUI无关的处理不要由EDT来负责,尤其是I/O这种耗时的操作。
书中还讲到Swing不是一个“安全线程”的API,为什么要这样设计,再回看上图就会明白:Swing的线程安全不是靠自身组件的API来保障,虽然repaint方法是这样,但是大多数Swing API是非线程安全的,也就是说不能在任意地方调用,它应该只在EDT中调用。Swing的线程安全靠事件队列和EDT来保障。
invokeLater和invokeAndWait:前文提到,Swing自身不是线程安全,对非EDT的并发调用需通过 invokeLater(runnable)和invokeAndWait(runnable)使请求插入到队列中等待EDT去执行。 invokeLater(runnable)方法是异步的,它会立即返回,具体何时执行请求并不确定,所以命名invokeLater是稍后调用。invokeAndWait(runnable)方法是同步的,它被调用结束会立即block当前线程(调用invokeAndWait的那个线程)直到EDT处理完那个请求。invokeAndWait一般的应用是取得Swing组件的数据,例如取得JSlider组件的当前值:
public class Task implements Runnable {
private JSlider slider;
private int value;
public Task() {
//slider = ...;
}
@Override
public void run() {
try {
Thread.sleep(1000); // 有意停住1秒
} catch (InterruptedException e) {
}
value = slider.getValue();
}
public int getValue() {
return value;
}
}
而外部非EDT线程可以这样调用:
Task task = new Task();
try {
EventQueue.invokeAndWait(task);
} catch (InterruptedException e) {
} catch (InvocationTargetException e) {
}
int value = task.getValue();
当线程运行到EventQueue.invokeAndWait(task)时会立即被block至少1秒,待invokeAndWait返回时已经可以安全地取到值了。invokeAndWait被这样命名也反映了使用的意图:调用并等待结果。invokeAndWait有非常重要的一条准则是它不能在 EDT中被调用,否则程序会抛出Error,请求也不会去执行。
public static void invokeAndWait(Runnable runnable)
throws InterruptedException, InvocationTargetException {
if (EventQueue.isDispatchThread()) {
throw new Error("Cannot call invokeAndWait from the event dispatcher thread");
}
class AWTInvocationLock {} // 声明这个类只是锁的标志,没有其他意义
Object lock = new AWTInvocationLock();
InvocationEvent event =
new InvocationEvent(Toolkit.getDefaultToolkit(), runnable, lock,
true);
synchronized (lock) {
Toolkit.getEventQueue().postEvent(event); //添加进事件队列
lock.wait(); // block当前线程
}
Throwable eventThrowable = event.getThrowable();
if (eventThrowable != null) {
throw new InvocationTargetException(eventThrowable);
}
}
为什么要有这样一条限制?结合前文不难得出-防止死锁。如果invokeAndWait在EDT中调用,那么首先将请求压进队列,然后EDT便被 block(因为它就是调用invokeAndWait的当前线程)等待请求结束通知它继续运行,而实际上请求将永远得不到执行,因为它在等待队列的调度使EDT执行它,这就陷入一个僵局-EDT等待请求先执行,请求又等待EDT对队列的调度。彼此等待对方释放锁是造成死锁的四类条件之一。Swing有意地避免了这类情况的发生。
书中也提到了同步的绘制请求,作为队列,一条基本原则就是先进先出。那么paintImmediately到底是怎样的呢?显然这个调用请求不会稍后去执行,也就是说不会插入到队列的末尾等到排在它前面的请求执行完再去执行它,而是“破坏”顺序性原则优先去执行,前面提到,Swing的事件队列相对基础的同步队列做了很多优化,那么这么说它是否被插入到队列最前面呢,也就是0这个位置?貌似也不是,书上说“已经在EDT中调用的方法中间...”,那么就是比当前正在处理的绘制请求还要优先,因为它是当前绘制请求的一部分,所以当前绘制请求(EDT正在处理的那个请求)要等它处理完成后再继续处理。(好好体会吧)
SwingWorker:推荐一篇Blog,http://blog.sina.com.cn/s/blog_4b6047bc010007so.html,作者是原Sun中国工程研究院的陈维雷先生,他对Swing的造诣非浅,他的Blog中有3篇介绍这一主题的文章,详尽程度要比该书详细得多。
最后,谈一下理解EDT对设计模式的帮助。通过上述对事件队列和EDT的分析,有这样一种体会:事件队列是一个非常好的处理并发设计模型,不仅 Swing用它来处理后台,Java的很多地方都在用,只不过对于处理服务器端的并发请求有多个处理线程在等候处理请求,也就是常说的线程池。而对于单用户的桌面应用,单线程调用要比多现成API更简单,“Swing后台这样做是为了保证事件的顺序和可预见性”,而且相对于服务器,客户端桌面层的请求要少得多,所以单线程就足够应对了。
单一Thread化的访问:
通过EDT,使得不具备线程安全的Swing函数库避开了并发访问的问题。如果你也有一个不具备thread安全性的函数库并想在multithreaded环境下使用应该怎么办?只要你是从单一的thread来访问这个函数库,程序就不会遭遇到任何数据同步的问题。
分享到:
相关推荐
智慧园区,作为现代城市发展的新形态,旨在通过高度集成的信息化系统,实现园区的智能化管理与服务。该方案提出,利用智能手环、定制APP、园区管理系统及物联网技术,将园区的各类设施与设备紧密相连,形成一个高效、便捷、安全的智能网络。从智慧社区到智慧酒店,从智慧景区到智慧康养,再到智慧生态,五大应用板块覆盖了园区的每一个角落,为居民、游客及工作人员提供了全方位、个性化的服务体验。例如,智能手环不仅能实现定位、支付、求助等功能,还能监测用户健康状况,让科技真正服务于生活。而智慧景区的建设,更是通过大数据分析、智能票务、电子围栏等先进技术,提升了游客的游玩体验,确保了景区的安全有序。 尤为值得一提的是,方案中的智慧康养服务,展现了科技对人文关怀的深刻体现。通过智慧手环与传感器,自动感知老人身体状态,及时通知家属或医疗机构,有效解决了“空巢老人”的照护难题。同时,智慧生态管理系统的应用,实现了对大气、水、植被等环境要素的实时监测与智能调控,为园区的绿色发展提供了有力保障。此外,方案还提出了建立全域旅游营销平台,整合区域旅游资源,推动旅游业与其他产业的深度融合,为区域经济的转型升级注入了新的活力。 总而言之,这份智慧园区建设方案以其前瞻性的理念、创新性的技术和人性化的服务设计,为我们展示了一个充满智慧与活力的未来园区图景。它不仅提升了园区的运营效率和服务质量,更让科技真正融入了人们的生活,带来了前所未有的便捷与舒适。对于正在规划或实施智慧园区建设的决策者而言,这份方案无疑提供了一份宝贵的参考与启示,激发了他们对于未来智慧生活的无限遐想与憧憬。
MES制造企业生产过程执行系统:全方位协同管理,提升生产效率与质量的信息化管理平台,MES制造企业生产过程执行系统:全面协同管理,提升生产效率与质量管理水平,mes制造企业生产过程执行系统,是一套面向制造企业车间执行层的生产信息化管理系统。 MES 可以为企业提供包括制造数据管理、计划排产管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心 设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等管理模块,为企业打造一个扎实、可靠、全面、可行的制造协同管理平台 ,MES制造企业生产过程执行系统;生产信息化管理;制造数据管理;计划排产管理;生产调度管理;库存管理;质量管理;人力资源管理;设备管理;数据集成分析,MES制造企业生产执行系统:全面协同管理平台助力制造企业高效运营
内容概要:本文介绍了C++编程中常见指针错误及其解决方案,并涵盖了模板元编程的基础知识和发展趋势,强调了高效流操作的最新进展——std::spanstream。文章通过一系列典型错误解释了指针的安全使用原则,强调指针初始化、内存管理和引用安全的重要性。随后介绍了模板元编程的核心特性,展示了编译期计算、类型萃取等高级编程技巧的应用场景。最后,阐述了C++23中引入的新特性std::spanstream的优势,对比传统流处理方法展现了更高的效率和灵活性。此外,还给出了针对求职者的C++技术栈学习建议,涵盖了语言基础、数据结构与算法及计算机科学基础领域内的多项学习资源与实战练习。 适合人群:正在学习C++编程的学生、从事C++开发的技术人员以及其他想要深入了解C++语言高级特性的开发者。 使用场景及目标:帮助读者掌握C++中的指针规则,预防潜在陷阱;介绍模板元编程的相关技术和优化方法;使读者理解新引入的标准库组件,提高程序性能;引导C++学习者按照有效的路径规划自己的技术栈发展路线。 阅读建议:对于指针部分的内容,应当结合实际代码样例反复实践,以便加深理解和记忆;在研究模板元编程时,要从简单的例子出发逐步建立复杂模型的理解能力,培养解决抽象问题的能力;而对于C++23带来的变化,则可以通过阅读官方文档并尝试最新标准特性来加深印象;针对求职准备,应结合个人兴趣和技术发展方向制定合理的学习计划,并注重积累高质量的实际项目经验。
VSC下垂控制策略仿真模型:基于MATLAB 2014a及更高版本的全面支持与应用实践,VSC下垂控制策略仿真模型MATLAB版本支持及功能解析,VSC下垂控制策略仿真模型,支持MATLAB2014a及以上版本 ,VSC下垂控制策略; 仿真模型; MATLAB 2014a及以上版本; 核心关键词,MATLAB 2014a及以上版VSC下垂控制策略仿真模型研究
摘 要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装信息技术知识赛系统软件来发挥其高效地信息处理的作用,可以规范信息管理流程,让管理工作可以系统化和程序化,同时,信息技术知识赛系统的有效运用可以帮助管理人员准确快速地处理信息。 信息技术知识赛系统在对开发工具的选择上也很慎重,为了便于开发实现,选择的开发工具为Eclipse,选择的数据库工具为Mysql。以此搭建开发环境实现信息技术知识赛系统的功能。其中管理员管理用户,新闻公告。 信息技术知识赛系统是一款运用软件开发技术设计实现的应用系统,在信息处理上可以达到快速的目的,不管是针对数据添加,数据维护和统计,以及数据查询等处理要求,信息技术知识赛系统都可以轻松应对。 关键词:信息技术知识赛系统;SpringBoot框架,系统分析,数据库设计
蓝桥杯是全国范围内具有广泛影响力的编程竞赛,对于准备参加蓝桥杯 Python 组比赛的同学来说,系统化的学习和针对性的训练是取得好成绩的关键。本项目是一份详细的蓝桥杯 Python 组准备建议,涵盖基础知识、算法与数据结构、刷题策略、实战演练以及心态调整等方面。
Simulink与Carsim联合仿真实现轨迹跟踪,考虑侧倾、曲率变化及侧偏刚度修正,考虑侧倾和曲率变化的轨迹跟踪:Simulink与Carsim联合仿真修正侧偏刚度技术解析,轨迹跟踪,考虑侧倾和曲率变化,同时修正侧偏刚度 simulink carsim联合仿真 ,轨迹跟踪; 侧倾和曲率变化; 侧偏刚度修正; Simulink; CarSim联合仿真,Simulink联合仿真:车辆轨迹跟踪及侧倾、曲率修正研究
总共包含 32 款 AAA 级科幻武器。四种武器类型,每种有 8 种不同的纹理变化! 所有内容均采用 PBR 材质,可直接用于开发游戏!
内容概要:本文详细介绍了在Ubuntu Linux上如何从零开始构建完整的PyTorch深度学习环境。步骤涵盖了镜像源配置、必需环境安装、Anaconda安装及配置,CUDA和显卡驱动安装,Anaconda虚拟环境创建,PyTorch安装及其相关依赖库的安装方法。对于安装过程中可能出现的一些问题提供了相应的解决方案。此外还简要涉及了Python环境的维护、IDE PyCharm的安装方法以及如何启动Anaconda附带的Jupyter Notebook。 适合人群:希望深入了解Linux操作系统下的机器学习环境配置过程的初级开发者和技术爱好者,特别是有兴趣应用PyTorch从事科研项目的人群。 使用场景及目标:旨在帮助读者掌握基于Ubuntu平台配置高性能PyTorch环境的具体流程,从而能快速投入到实际开发工作中;同时为未来扩展更多AI/ML应用打下坚实基础。 其他说明:本教程假设读者已经有一定Linux命令行操作基础,并且拥有基本的Python编程能力。教程重点在于具体的技术步骤而非理论讲解,对于每一阶段都附带有详尽的操作截图辅助理解。
IEEE9节点系统Simulink仿真:实现潮流计算与稳定性分析的电力仿真模型,基于Matlab Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析,IEEE9节点系统Simulink仿真 1.基础功能:基于Matlab simulink平台搭建IEEE9节点仿真模型,对电力系统进行潮流计算(与编程用牛拉法计算潮流结果一致) 2.拓展功能: 可在该IEEE9节系统仿真模型上进行暂态、静态稳定性仿真分析。 ,IEEE9节点系统; Simulink仿真; 潮流计算; 牛拉法; 暂态稳定性仿真分析; 静态稳定性仿真分析,基于Simulink的IEEE9节点系统仿真:潮流计算与稳定性分析
欧姆龙NJ/NX系列PLC ST语言编程:Modbus RTU读写轮询与八从站通讯集成,搭配CF105模块使用,含FB功能块调用案例参考,欧姆龙NJ/NX系列PLC的ST语言编程:集成Modbus RTU读写轮询与八个485从站通讯功能,搭配CF105模块使用,含通讯FB功能块与主程序调用案例,欧姆龙NJ,NX系列plc,ST语言编写,该程序包含ModbusRTU的读写轮询,带八个485从站,此程序必须搭配欧姆龙CF105模块才能使用。 通讯的程序都封装成FB功能块可以直接调用,主程序有调用案例参考 ,欧姆龙NJ; NX系列PLC; ST语言编写; ModbusRTU读写轮询; 485从站; 欧姆龙CF105模块; 通讯FB功能块; 主程序调用案例。,欧姆龙PLC ST语言Modbus RTU读写轮询程序:CF105模块八从站通讯应用
数学建模相关主题资源2
Go语言教程&案例&相关项目资源
### **软件更新公告:AI会话存档与分析功能全新上线!** 亲爱的用户, 我们很高兴地宣布,本次软件更新带来了全新的 **AI会话存档与分析功能**,旨在帮助企业更好地管理员工与客户的沟通内容,提升服务质量,优化运营效率。以下是本次更新的详细内容: --- #### **1. 会话存档** - **功能描述**:系统将自动拉取员工与客户的文本聊天内容,并完整存档,方便随时查阅。 - **使用场景**: - 查看员工与客户的历史沟通记录。 - 审计聊天内容,确保合规性。 - 为客户问题提供追溯依据。 --- #### **2. AI会话报告** - **功能描述**:结合 **DeepSeek AI** 技术,对员工发送给客户的聊天内容进行智能分析,判断是否存在以下行为: - **敲单行为**:识别员工是否诱导客户下单或进行不必要的推销。 - **辱骂客户**:检测聊天内容中是否存在不当言辞或辱骂行为。 - **索要回扣/红包**:分析员工是否向客户索要回扣、红包或其他不当利益。 - **使用场景**: - 实时监控员工与客户的沟通质量。
毕业设计
并联型APF有源电力滤波器Matlab Simulink仿真研究:涉及dq和αβ坐标系谐波无功检测与SVPWM调制方式的仿真介绍文档,基于Matlab Simulink仿真的并联型APF有源电力滤波器谐波及无功检测技术研究,包含PI控制与SVPWM调制方式的深入探讨,并联型APF 有源电力滤波器 Matlab Simulink仿真 *dq FBD谐波 无功检测 *两相旋转坐标系(dq)、两相静止坐标系(αβ)下的PI控制 *SVPWM调制方式 (含仿真介绍文档) ,核心关键词:并联型APF; 有源电力滤波器; Matlab Simulink仿真; dq FBD谐波无功检测; 两相旋转坐标系PI控制; 两相静止坐标系PI控制; SVPWM调制方式。,基于Matlab Simulink仿真的并联型APF有源电力滤波器研究:dq FBD谐波与无功检测的PI控制及SVPWM调制方式
内容概要:本文详细介绍了苹果公司推出的编程语言 Swift,涵盖其基本概念、语法特点、环境搭建以及从 Swift 3 到 Swift 6 的重要更新与发展历程。Swift 是一门专注于 iOS、macOS、watchOS 和 tvOS 开发的语言,语法简洁,比 Objective-C 更易于学习和使用。文章首先简要介绍了 Swift 的基础知识,包括变量和常量、基本数据类型、控制流语句、函数定义、类和结构体,以及高级特性如可选类型、强制解包、可选绑定、闭包和协议。接着探讨了 Swift 的历史演变及其在不同操作系统(Linux 和 Windows)上的应用,尤其是 Swift 在 2015 年开源后的快速发展。最新的 Swift 6 版本引入了诸如编译时数据竞争保护等多项创新特性,极大地提升了并发编程的安全性和易用性。最后讨论了开发者的看法及其应用场景的可能性。 适合人群:具有一定编程基础的研发人员,尤其是那些有兴趣深入了解苹果生态系统或跨平台开发的技术爱好者。 使用场景及目标:帮助读者快速掌握 Swift 编程语言的核心概念和技术栈;指导初学者如何配置和使用 Xcode 编写首个 Swift 应用程序;分析最新发布的 Swift 6 更新亮点,并提供从 Swift 5 迁移到 Swift 6 期间可能遇到的问题及解决方法。 阅读建议:建议新手先掌握基本的 Swift 语法和面向对象编程思想再深入研究高级主题;同时密切关注官方发布的最新动态和支持资料,及时更新对 Swift 技术的认知;针对想要过渡到 Swift 6 的团队,务必进行充分的学习准备并在实践中积累经验以克服潜在困难。此外,考虑到 Swift 正逐渐扩展到非苹果平台的应用开发中,请对 Swift 在不同平台下的表现保持敏感并积极探索跨平台解决方案。
毕业设计
BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法全攻略:涵盖STM32F1实战代码与原理图,BLDC无刷直流电机与PMSM永磁同步电机的传感器/无传感器驱动算法集合,STM32F1代码全解析与分享,BLDC无刷直流电机和PMSM永磁同步电机 可提供所有代码中所有算法的,每个代码都亲自验证过。 基于STM32F1的有传感器和无传感驱动 直流无刷电机有传感器和无传感驱动程序, 无传感的实现是基于反电动势过零点实现的,有传感的霍尔实现。 永磁同步电机有感无感程序,有感为霍尔FOC和编码器方式, 无感为滑模观测器方式。 有原理图和文档,识的赶紧,物超所值。 提供里面所有代码,所有算法的。 提供里面所有代码,所有算法的。 ,BLDC无刷直流电机; PMSM永磁同步电机; 算法验证; STM32F1驱动; 有传感器驱动; 无传感驱动; 反电动势过零点; 霍尔实现; 霍尔FOC; 编码器方式; 换滑模观测器; 原理图; 文档。,基于STM32F1的BLDC与PMSM电机驱动解决方案:全算法代码与原理图详解
永磁同步电机矢量控制仿真研究:无SVPWM发波策略分析,永磁同步电机矢量控制仿真研究:不含SVPWM发波的算法优化分析,永磁同步电机矢量控制仿真,不带SVPWM发波 ,永磁同步电机; 矢量控制; 仿真; 不带SVPWM发波; 控制系统,永磁同步电机矢量控制仿真:非SVPWM发波技术探讨