[转载 ]
在开发Java程序,尤其是Java EE应用的时候,总是免不了与各种配置文件打交道。以Java EE中典型的S(pring)S(truts)H(ibernate)架构来说,Spring 、Struts 和Hibernate 这 三个框架都有自己的XML格式的配置文件。这些配置文件需要与Java源代码保存同步,否则的话就可能出现错误。而且这些错误有可能到了运行时刻才被发 现。把同一份信息保存在两个地方,总是个坏的主意。理想的情况是在一个地方维护这些信息就好了。其它部分所需的信息则通过自动的方式来生成。JDK 5中引入了源代码中的注解(annotation)这一机制。注解使得Java源代码中不但可以包含功能性的实现代码,还可以添加元数据。注解的功能类似 于代码中的注释,所不同的是注解不是提供代码功能的说明,而是实现程序功能的重要组成部分。Java注解已经在很多框架中得到了广泛的使用,用来简化程序 中的配置。
使用注解
在一般的Java开发中,最常接触到的可能就是@Override 和@SupressWarnings 这 两个注解了。使用@Override的时候只需要一个简单的声明即可。这种称为标记注解(marker annotation ),它的出现就代表了某种配置语义。而其它的注解是可以有自己的配置参数的。配置参数以名值对的方式出现。使用 @SupressWarnings的时候需要类似@SupressWarnings({"uncheck", "unused"})这样的语法。在括号里面的是该注解可供配置的值。由于这个注解只有一个配置参数,该参数的名称默认为value,并且可以省略。而花 括号则表示是数组类型。在JPA 中的@Table 注解使用类似@Table(name = "Customer", schema = "APP")这样的语法。从这里可以看到名值对的用法。在使用注解时候的配置参数的值必须是编译时刻的常量。
从某种角度来说,可以把注解看成是一个XML元素,该元素可以有不同的预定义的属性。而属性的值是可以在声明该元素的时候自行指定的。在代码中使用注解,就相当于把一部分元数据从XML文件移到了代码本身之中,在一个地方管理和维护。
开发注解
在一般的开发中,只需要通过阅读相关的API文档来了解每个注解的配置参数的含义,并在代码中正确使用即可。在有些情况下,可能会需要开发自己的注 解。这在库的开发中比较常见。注解的定义有点类似接口。下面的代码给出了一个简单的描述代码分工安排的注解。通过该注解可以在源代码中记录每个类或接口的 分工和进度情况。
@Retention(RetentionPolicy.RUNTIME) @Target(ElementType.TYPE) public @interface Assignment { String assignee(); int effort(); double finished() default 0; }
@interface用来声明一个注解,其中的每一个方法实际上是声明了一个配置参数。方法的名称就是参数的名称,返回值类型就是参数的类型。可以通过default来声明参数的默认值。在这里可以看到@Retention 和@Target 这样的元注解,用来声明注解本身的行为。@Retention用来声明注解的保留策略,有CLASS 、RUNTIME 和SOURCE 这三种,分别表示注解保存在类文件、JVM运行时刻和源代码中。只有当声明为RUNTIME的时候,才能够在运行时刻通过反射API来获取到注解的信息。@Target用来声明注解可以被添加在哪些类型的元素上,如类型、方法和域等。
处理注解
在程序中添加的注解,可以在编译时刻或是运行时刻来进行处理。在编译时刻处理的时候,是分成多趟来进行的。如果在某趟处理中产生了新的Java源文 件,那么就需要另外一趟处理来处理新生成的源文件。如此往复,直到没有新文件被生成为止。在完成处理之后,再对Java代码进行编译。JDK 5中提供了apt 工具用来对注解进行处理。apt是一个命令行工具,与之配套的还有一套用来描述程序语义结构的Mirror API 。Mirror API(com.sun.mirror.*)描述的是程序在编译时刻的静态结构。通过Mirror API可以获取到被注解的Java类型元素的信息,从而提供相应的处理逻辑。具体的处理工作交给apt工具来完成。编写注解处理器的核心是AnnotationProcessorFactory 和AnnotationProcessor 两个接口。后者表示的是注解处理器,而前者则是为某些注解类型创建注解处理器的工厂。
以上面的注解Assignment为例,当每个开发人员都在源代码中更新进度的话,就可以通过一个注解处理器来生成一个项目整体进度的报告。 首先是注解处理器工厂的实现。
public class AssignmentApf implements AnnotationProcessorFactory { public AnnotationProcessor getProcessorFor(Set<AnnotationTypeDeclaration> atds, ? AnnotationProcessorEnvironment env) { if (atds.isEmpty()) { return AnnotationProcessors.NO_OP; } return new AssignmentAp(env); //返回注解处理器 } public Collection<String> supportedAnnotationTypes() { return Collections.unmodifiableList(Arrays.asList("annotation.Assignment")); } public Collection<String> supportedOptions() { return Collections.emptySet(); } }
AnnotationProcessorFactory接口有三个方法:getProcessorFor是根据注解的类型来返回特定的注解处理 器;supportedAnnotationTypes是返回该工厂生成的注解处理器所能支持的注解类型;supportedOptions用来表示所支 持的附加选项。在运行apt命令行工具的时候,可以通过-A来传递额外的参数给注解处理器,如-Averbose=true。当工厂通过 supportedOptions方法声明了所能识别的附加选项之后,注解处理器就可以在运行时刻通过AnnotationProcessorEnvironment 的getOptions方法获取到选项的实际值。注解处理器本身的基本实现如下所示。
public class AssignmentAp implements AnnotationProcessor { private AnnotationProcessorEnvironment env; private AnnotationTypeDeclaration assignmentDeclaration; public AssignmentAp(AnnotationProcessorEnvironment env) { this.env = env; assignmentDeclaration = (AnnotationTypeDeclaration) env. getTypeDeclaration("annotation.Assignment"); } public void process() { Collection<Declaration> declarations = env.getDeclarationsAnnotatedWith(assignmentDeclaration); for (Declaration declaration : declarations) { processAssignmentAnnotations(declaration); } } private void processAssignmentAnnotations(Declaration declaration) { Collection<AnnotationMirror> annotations = declaration.getAnnotationMirrors(); for (AnnotationMirror mirror : annotations) { if (mirror.getAnnotationType().getDeclaration().equals(assignmentDeclaration)) { Map<AnnotationTypeElementDeclaration, AnnotationValue> values = mirror.getElementValues(); String assignee = (String) getAnnotationValue(values, "assignee"); //获取注解的值 } } } }
注解处理器的处理逻辑都在process方法中完成。通过一个声明(Declaration )的getAnnotationMirrors方法就可以获取到该声明上所添加的注解的实际值。得到这些值之后,处理起来就不难了。
在创建好注解处理器之后,就可以通过apt命令行工具来对源代码中的注解进行处理。 命令的运行格式是apt -classpath bin -factory annotation.apt.AssignmentApf src/annotation/work/*.java,即通过-factory来指定注解处理器工厂类的名称。实际上,apt工具在完成处理之后,会自 动调用javac来编译处理完成后的源代码。
JDK 5中的apt工具的不足之处在于它是Oracle提供的私有实现。在JDK 6中,通过JSR 269 把自定义注解处理器这一功能进行了规范化,有了新的javax.annotation.processing 这个新的API。对Mirror API也进行了更新,形成了新的javax.lang.model 包。注解处理器的使用也进行了简化,不需要再单独运行apt这样的命令行工具,Java编译器本身就可以完成对注解的处理。对于同样的功能,如果用JSR 269的做法,只需要一个类就可以了。
@SupportedSourceVersion(SourceVersion.RELEASE_6) @SupportedAnnotationTypes("annotation.Assignment") public class AssignmentProcess extends AbstractProcessor { private TypeElement assignmentElement; public synchronized void init(ProcessingEnvironment processingEnv) { super.init(processingEnv); Elements elementUtils = processingEnv.getElementUtils(); assignmentElement = elementUtils.getTypeElement("annotation.Assignment"); } public boolean process(Set<? extends TypeElement> annotations, RoundEnvironment roundEnv) { Set<? extends Element> elements = roundEnv.getElementsAnnotatedWith(assignmentElement); for (Element element : elements) { processAssignment(element); } } private void processAssignment(Element element) { List<? extends AnnotationMirror> annotations = element.getAnnotationMirrors(); for (AnnotationMirror mirror : annotations) { if (mirror.getAnnotationType().asElement().equals(assignmentElement)) { Map<? extends ExecutableElement, ? extends AnnotationValue> values = mirror.getElementValues(); String assignee = (String) getAnnotationValue(values, "assignee"); //获取注解的值 } } } }
仔细比较上面两段代码,可以发现它们的基本结构是类似的。不同之处在于JDK 6中通过元注解@SupportedAnnotationTypes 来 声明所支持的注解类型。另外描述程序静态结构的javax.lang.model包使用了不同的类型名称。使用的时候也更加简单,只需要通过javac -processor annotation.pap.AssignmentProcess Demo1.java这样的方式即可。
上面介绍的这两种做法都是在编译时刻进行处理的。而有些时候则需要在运行时刻来完成对注解的处理。这个时候就需要用到Java的反射API。反射API提供了在运行时刻读取注解信息的支持。不过前提是注解的保留策略声明的是运行时。Java反射API的AnnotatedElement 接口提供了获取类、方法和域上的注解的实用方法。比如获取到一个Class类对象之后,通过getAnnotation方法就可以获取到该类上添加的指定注解类型的注解。
实例分析
下面通过一个具体的实例来分析说明在实践中如何来使用和处理注解。假定有一个公司的雇员信息系统,从访问控制的角度出发,对雇员的工资的更新只能由具有特定角色的用户才能完成。考虑到访问控制需求的普遍性,可以定义一个注解来让开发人员方便的在代码中声明访问控制权限。
@Retention(RetentionPolicy.RUNTIME) @Target(ElementType.METHOD) public @interface RequiredRoles { String[] value(); }
下一步则是如何对注解进行处理,这里使用的Java的反射API并结合动态代理 。下面是动态代理中的InvocationHandler接口的实现。
public class AccessInvocationHandler<T> implements InvocationHandler { final T accessObj; public AccessInvocationHandler(T accessObj) { this.accessObj = accessObj; } public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { RequiredRoles annotation = method.getAnnotation(RequiredRoles.class); //通过反射API获取注解 if (annotation != null) { String[] roles = annotation.value(); String role = AccessControl.getCurrentRole(); if (!Arrays.asList(roles).contains(role)) { throw new AccessControlException("The user is not allowed to invoke this method."); } } return method.invoke(accessObj, args); } }
在具体使用的时候,首先要通过Proxy.newProxyInstance方法创建一个EmployeeGateway的接口的代理类,使用该代理类来完成实际的操作。
参考资料
发表评论
-
[转载]Java注解--源码解析
2012-04-24 18:59 2477注解提供了一种结构化的,并且具有类型检查能力的新途径,从而使程 ... -
J2EE、J2SE、J2ME区别
2012-04-21 18:07 1383JAVA2平台是提供JAVA程序开发、运行环境的平台,JAVA ... -
[转载]JDK和JRE目录的文件结构
2012-04-21 17:12 1902[转载 ] 我们下 ... -
[转载]SDK、JDK、JRE和JVM的关系总结
2012-04-12 22:16 2079一、SDK、JDK、JRE和JVM的 ... -
Java注解
2012-04-11 02:02 1880可以先看看转载的三篇博客: Java注解--基础知识 ... -
[转载]Java注解--基础知识
2012-04-10 23:53 1538[转载 ] 一、什么是java 注 ... -
集合初探--集合中的其它设计模式
2011-03-27 21:35 12761.集合中的工厂方法模式 ·工厂方法(FactoryMet ... -
集合初探--集合中的设计模式之Iterator模式
2011-03-27 21:35 13101. Iterator模式 ·标准定义:提供一种统一的方法顺 ... -
集合初探--Fail-Fast机制
2011-03-27 21:35 1230Fail-Fast机制 ·在系统发生错误后,立即作出响应,阻 ... -
集合初探--认识Set
2011-03-27 21:34 10391. HashSet ·基于HashMap实现的,Hash ... -
集合初探--认识Map
2011-03-27 21:34 11421. HashMap A)底层数据结构 ·HashMap ... -
集合初探--认识List
2011-03-27 21:34 14351. ArrayList A) 底层数据结构 ·本质是 ... -
集合初探--集合框架
2011-03-24 09:44 1152最近学习了java集合,将自己学习的笔记整理后发布到博客,本系 ...
相关推荐
11. **Java虚拟机(JVM)**:理解JVM的工作原理,包括类加载机制、内存模型(堆、栈、方法区等)以及JVM调优,有助于提升程序性能。 12. **Java 8及以后的特性**:从Java 8开始,引入了Lambda表达式、Stream API和...
整个系列不会讲的太深入,以免造成初学者不知所云,通过一个Demo,让大家了解 java 字节码插桩的基本实现原理,为后续更深入的学习指引方向。 ———————————————— 版权声明:本文为CSDN博主「小强冲冲...
《自己动手写一个Spring》这篇文章主要探讨了Spring框架的核心概念,并通过模拟其实现来帮助读者深入理解其工作原理。Spring是Java开发中最流行的框架之一,它以依赖注入(Dependency Injection,DI)和面向切面编程...
内容概要:本文详细介绍了如何利用Simulink对BUCK电路进行PI闭环控制仿真。首先解释了BUCK电路的基本原理及其数学表达式,接着逐步指导如何在Simulink中构建仿真模型,包括选择合适的元件如电源、开关、电感、电容等,并设置了具体的参数。然后重点讲解了PI控制器的设计方法,展示了如何通过MATLAB代码实现PI控制算法,并讨论了不同参数对控制系统的影响。最后,通过观察和分析仿真结果的关键波形,探讨了如何优化PI控制器参数以获得更好的输出效果。 适合人群:从事电力电子设计的研究人员和技术爱好者,尤其是那些希望深入了解BUCK电路及其控制机制的人群。 使用场景及目标:适用于需要掌握BUCK电路工作原理以及PI闭环控制方法的学习者;旨在提高对电力电子系统的理解和优化能力。 其他说明:文中提供了详细的步骤和实例,有助于读者更好地理解和应用所学知识。此外,还提到了一些常见的挑战和解决方案,例如如何避免电压过冲、优化负载响应时间和减少输出电压纹波等问题。
MFC-Windows应用程序设计-第2章-Windows应用程序的类封装.pptx
MCS51单片机指令系统数据传送类指令.pptx
PLC电源模块维修重点技术实例.doc
内容概要:本文详细介绍了如何利用西门子S7-1200 PLC构建一个高精度的恒温水箱控制系统。首先讨论了硬件选择与配置,包括PT100温度传感器、模拟量模块的选择以及滤波时间的优化。接着深入探讨了PID控制算法的应用,包括参数整定技巧、移动平均滤波的应用以及PWM输出控制方法。此外,还涉及了人机界面的设计,强调了报警机制的优化和现场调试的经验分享。文中提供了多个实用的SCL代码片段,帮助读者更好地理解和实施具体的技术细节。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和温度控制感兴趣的初学者。 使用场景及目标:适用于需要精确温度控制的工业应用场景,如食品加工、生物制药等行业。目标是将温度波动控制在±0.5℃以内,确保生产过程的稳定性。 其他说明:文中不仅提供了详细的理论讲解,还结合了大量的实际案例和调试经验,有助于读者快速掌握相关技术和应对常见问题。
内容概要:本文详细介绍了利用COMSOL进行太赫兹波段石墨烯超表面吸波器的设计与仿真的全过程。首先,通过几何建模创建了基于矩形堆叠的石墨烯单元结构,并设置了合适的材料参数,特别是石墨烯的表面电导率采用Kubo公式表示。接着,针对边界条件进行了细致设定,如使用完美匹配层(PML)和Floquet周期边界条件,确保计算效率和准确性。然后,通过参数扫描和优化,研究了不同费米能级对吸收峰的影响,实现了吸收频段的动态调控。最后,通过后处理和动画制作,展示了吸收峰随费米能级变化的动态效果,并提供了具体的MATLAB和COMSOL代码示例。 适合人群:从事太赫兹器件设计、电磁仿真以及石墨烯材料应用的研究人员和技术人员。 使用场景及目标:适用于希望深入了解太赫兹波段吸波器设计原理及其动态调控特性的科研工作者。目标是通过实际操作和理论分析相结合,掌握石墨烯超表面吸波器的设计方法和优化技巧。 其他说明:文中提供的具体步骤和代码示例有助于快速上手COMSOL仿真工具,同时强调了常见问题的解决方法,如收敛问题和网格划分策略。
内容概要:本文详细介绍了两轮平衡车和扭扭车的完整设计方案,涵盖硬件和软件两个方面。硬件部分包括主控芯片(如STM32F103)、传感器(如MPU6050)的选择与布局,以及PCB设计要点,强调了电机驱动模块的布线规则和电磁干扰防护措施。软件部分则聚焦于核心算法,如PID控制和卡尔曼滤波,用于处理传感器数据并实现车辆的平衡和运动控制。此外,文章还讨论了烧写程序、调试文件和BOM清单等量产相关的内容,分享了许多实用经验和技巧。 适合人群:对两轮平衡车和扭扭车设计感兴趣的电子工程师、硬件开发者和嵌入式程序员。 使用场景及目标:帮助读者掌握从原理图设计到量产的全流程,包括硬件选型、PCB布局、程序编写、调试方法和批量生产的注意事项。目标是让读者能够独立完成一套完整的两轮平衡车或扭扭车项目。 其他说明:文中提供了大量实战经验和技术细节,如PID参数调优、PCB布局技巧、电机驱动优化等,有助于提高产品的稳定性和可靠性。
内容概要:文章详细介绍了汽车电子软件A/B分区方案,这是一种用于汽车电子系统软件管理的最佳实践。A/B分区通过将存储空间划分为两个独立分区,分别保存完整的软件镜像,实现软件的无感更新、提高系统可靠性和支持远程更新(OTA)。具体工作流程包括从当前分区启动、下载更新包、分区验证、切换准备、重启运行以及回滚与故障处理。其核心优势在于减少停机时间、增强可靠性和安全性、助力OTA更新及提升用户体验。然而,该方案也面临存储空间需求大、更新管理复杂和功耗性能优化等挑战。文章最后提出了优化存储空间、简化更新管理和优化功耗的具体措施。 适合人群:汽车电子工程师、汽车制造商技术人员、对汽车电子系统感兴趣的工程师和技术爱好者。 使用场景及目标:①理解A/B分区的工作机制及其在汽车电子系统中的应用;②掌握A/B分区在软件更新过程中的具体操作流程;③了解A/B分区带来的优势及其面临的挑战,为实际项目提供参考。 其他说明:A/B分区方案已在新能源汽车和新势力造车中广泛应用,未来将在智能汽车和自动驾驶技术中发挥更大作用。文章强调了长期主义的重要性,鼓励读者在技术发展中保持耐心和持续学习的态度。
内容概要:本文详细介绍了利用粒子群优化(Particle Swarm Optimization, PSO)算法,在光伏电池受到局部阴影遮挡的情况下实现最大功率点跟踪(Maximum Power Point Tracking, MPPT)的方法。文中首先解释了阴影条件下光伏电池输出特性的变化,即P-V曲线由单一峰值变为多峰形态,使得传统的扰动观测法难以找到全局最大功率点。接着阐述了PSO算法的基本原理及其在MPPT中的具体实现方式,包括粒子初始化、速度和位置更新规则以及如何处理电压突变引起的系统震荡等问题。此外还讨论了粒子数量的选择、参数动态调整策略、适应度函数改进等方面的内容,并通过实验验证了该方法的有效性和优越性。 适合人群:从事光伏发电系统研究与开发的技术人员,尤其是关注提高光伏系统在非理想环境下工作效率的研究者。 使用场景及目标:适用于存在局部阴影遮挡情况下的光伏电站或分布式光伏发电系统的优化设计,旨在提高此类条件下光伏系统的能量转化效率。 其他说明:文中不仅提供了详细的理论推导和技术细节,还有具体的代码片段用于辅助理解和实施。同时指出,在实际应用中可以根据不同的应用场景灵活调整相关参数配置,如粒子数目、惯性权重等,从而达到更好的性能表现。
office办公软件培训.pptx
2025免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。
内容概要:本文详细介绍了如何使用Matlab进行平行泊车和垂直泊车的路径规划与仿真。首先解释了平行泊车的基本原理,即基于车辆运动学模型,通过控制转向角和速度来规划从初始位置到目标车位的平滑路径。接着展示了具体的Matlab代码实现,包括初始化参数设置、路径规划的循环迭代以及最终的路径绘图。对于垂直泊车,则强调了其独特的路径规划逻辑,分为接近车位和转向进入两个阶段,并给出了相应的代码示例。此外,还讨论了一些高级话题,如使用双圆弧+直线组合方案、五次多项式轨迹生成、PID控制器实现轨迹跟踪等方法来优化路径规划。同时提到了碰撞检测模块的实现方式及其重要性。 适合人群:对自动驾驶技术感兴趣的初学者或有一定编程基础的研发人员。 使用场景及目标:适用于希望深入了解自动驾驶泊车原理和技术细节的人群,特别是那些想要动手实践并掌握Matlab编程技巧的学习者。通过学习本文提供的代码示例,读者能够更好地理解平行泊车和垂直泊车的具体实现过程,从而为进一步研究提供坚实的基础。 其他说明:文中提到的所有代码均为简化版本,旨在帮助读者快速入门。实际应用中可能需要考虑更多因素,例如车辆的实际尺寸、环境感知模块的集成等。此外,作者还分享了许多实用的经验和技巧,如如何避免常见的错误、如何优化代码性能等。
内容概要:本文详细介绍了如何使用连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)进行滚动轴承故障诊断的方法。首先,通过对东南大学提供的轴承数据集进行预处理,将一维振动信号转换为时频图。然后,构建了一个CNN-SVM混合模型,其中CNN用于提取时频图的特征,SVM用于分类。文中还讨论了如何选择合适的小波基、尺度范围以及如何防止过拟合等问题。此外,作者提供了T-SNE可视化工具来评估模型性能,并分享了一些实用的避坑指南。 适合人群:从事机械设备故障诊断的研究人员和技术人员,尤其是那些对振动信号处理有一定了解的人。 使用场景及目标:适用于工业环境中对旋转机械设备的故障检测和预测。主要目标是提高故障诊断的准确性,减少误判率,确保设备的安全稳定运行。 其他说明:文中提到的所有代码均已在Matlab环境下验证通过,并附有详细的注释和解释。对于初学者来说,建议逐步跟随代码实现,理解每一步骤背后的原理。
内容概要:本文详细介绍了基于三菱F5U系列PLC的恒压测试设备开发过程,涵盖了ST语言编程和梯形图逻辑控制的综合应用。主要内容包括设备的整体功能概述,如递增调压和恒压保持两大功能;ST语言在数据处理方面的优势,如从触摸屏读取设置数据、处理压力传感器数据等;梯形图在逻辑控制方面的作用,如实现递增和恒压模式的切换;触摸屏程序设计,确保良好的人机交互体验;以及监控曲线和历史记录的实现方法。文中还特别强调了ST语言和梯形图混合编程的优势和注意事项。 适合人群:具备一定PLC编程基础的电气工程师和技术人员。 使用场景及目标:适用于工业自动化领域的恒压测试设备开发,旨在提高系统的灵活性和可靠性,帮助工程师更好地理解和应用ST语言和梯形图编程。 其他说明:文章提供了多个具体的代码示例和实用技巧,如数据类型转换、环形缓冲区设计、急停逻辑等,有助于读者在实际项目中借鉴和应用。
内容概要:本文由一位汽车电子工程师撰写,主要介绍了CAPL语言及其在CANoe中的调试功能。CAPL是一种专用于CANoe的类C编程语言,支持节点仿真、报文收发、自动化测试等功能。CAPL文件分为.can和.cin两种类型,程序结构包含头文件、全局变量、事件函数和自定义函数。CAPL基于事件驱动,常见事件包括系统事件、报文事件、时间事件等。CAPL支持多种数据类型和复杂数据结构。CANoe的CAPL Debug功能允许用户在仿真或测试过程中对CAPL代码进行调试,通过设置断点、单步执行等方式检查代码逻辑和变量值,确保代码满足需求。; 适合人群:具有汽车电子开发背景,尤其是从事汽车总线网络开发、测试和分析的工程师。; 使用场景及目标:①掌握CAPL语言的基本语法和特性,熟悉CAPL文件结构和编程规范;②学会使用CANoe中的CAPL Debug功能,能够设置断点、单步调试并查看变量变化,确保代码正确性和可靠性;③提升对汽车总线网络开发和测试的理解和实践能力。; 阅读建议:本文详细介绍了CAPL语言及其调试功能,建议读者在学习过程中结合实际项目进行实践,逐步掌握CAPL编程技巧和调试方法。同时,注意理解CAPL的事件驱动机制和数据类型,这对编写高效、可靠的CAPL代码至关重要。
内容概要:本文详细介绍了基于SSM(Spring + SpringMVC + MyBatis)框架的ERP生产管理系统的源码实现及其关键特性。首先探讨了系统的权限控制设计,采用Shiro实现按钮级别的权限管理,确保不同角色拥有不同的操作权限。接着分析了设备管理模块,展示了MyBatis动态SQL的应用以及设备状态更新的灵活性。工艺监控模块利用EasyUI DataGrid实现实时数据刷新,结合后端分页查询提高性能。质量监控模块则通过Spring事务注解实现异常数据处理的原子性。此外,系统采用了Shiro进行用户密码加密,增强了安全性。最后讨论了系统的布局设计和数据可视化的实现。 适合人群:具备一定Java开发经验的研发人员,特别是对SSM框架有初步了解并希望深入了解其实战应用的技术人员。 使用场景及目标:适用于需要构建或改进企业内部生产管理系统的开发团队。主要目标是通过研究现有系统的实现细节,掌握SSM框架的最佳实践,提升系统的稳定性和功能性。 其他说明:文中提到的许多技术细节如权限控制、事务管理和数据可视化等,不仅有助于理解SSM框架的工作原理,还能为实际项目提供宝贵的参考。
内容概要:本文继续深入介绍 AUTOSAR BSW 层的关键模块,主要包括诊断模块、硬件I/O抽象模块和操作系统OS。诊断模块包含诊断通信管理器(DCM)、诊断事件管理器(DEM)和功能禁止管理器(FIM),它们分别负责通信协议实现、事件管理和功能控制,确保ECU在不同情况下的正确响应。硬件I/O抽象模块通过将硬件接口抽象化,使上层软件无需关心底层硬件细节,提高了系统的可移植性和维护性。操作系统OS分为SC1到SC4四个等级,从基本任务调度到高级别的内存和时间保护,适应不同功能安全级别的需求,保障了多任务环境下的数据一致性和实时性能。 适合人群:对汽车电子控制系统有一定了解的研发人员,尤其是从事AUTOSAR相关工作的工程师和技术人员。 使用场景及目标:①理解AUTOSAR架构下BSW层各模块的具体功能和相互关系;②掌握诊断模块在汽车ECU中的应用及其重要性;③学习硬件I/O抽象模块的设计思路和实现方法;④了解AUTOSAR OS的不同分类及其在不同安全等级产品中的应用。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者先熟悉AUTOSAR的基础概念,再逐步深入理解各模块的工作原理和应用场景。同时,结合实际项目经验进行对比学习,有助于更好地掌握本文内容。