`
tang9140
  • 浏览: 35462 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

hadoop中map和reduce的数量设置问题

 
阅读更多

转载http://my.oschina.net/Chanthon/blog/150500

map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。

1 map的数量

map的数量通常是由hadoop集群的DFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的没一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的DFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对交大的默认值,从而提高整体hadoop集群的效率。

2 reduece的数量

reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

3 reduce数量为0

有些作业不需要进行归约进行处理,那么就可以设置reduce的数量为0来进行处理,这种情况下用户的作业运行速度相对较高,map的输出会直接写入到 SetOutputPath(path)设置的输出目录,而不是作为中间结果写到本地。同时Hadoop框架在写入文件系统前并不对之进行排序。

map red.tasktracker.map.tasks.maximum 这个是一个task tracker中可同时执行的map的最大个数,默认值为2,看《pro hadoop》:it is common to set this value to the effective number of CPUs on the node
把ob分割成map和reduce,合理地选择Job中 Tasks数的大小能显著的改善Hadoop执行的性能。增加task的个数会增加系统框架的开销,但同时也会增强负载均衡并降低任务失败的开销。一个极端是1个map、1个reduce的情况,这样没有任务并行。另一个极端是1,000,000个map、1,000,000个reduce的情况,会由于框架的开销过大而使得系统资源耗尽。
Map任务的数量
Map的数量经常是由输入数据中的DFS块的数量来决定的。这还经常会导致用户通过调整DFS块大小来调整map的数量。正确的map任务的并行度似乎应该是10-100 maps/节点,尽管我们对于处理cpu运算量小的任务曾经把这个数字调正到300maps每节点。Task的初始化会花费一些时间,因此最好控制每个 map任务的执行超过一分钟。
实际上控制map任务的个数是很 精妙的。mapred.map.tasks参数对于InputFormat设定map执行的个数来说仅仅是一个提示。InputFormat的行为应该把输入数据总的字节值分割成合适数量的片段。但是默认的情况是DFS的块大小会成为对输入数据分割片段大小的上界。一个分割大小的下界可以通过一个mapred.min.split.size参数来设置。因此,如果你有一个大小是10TB的输入数据,并设置DFS块大小为 128M,你必须设置至少82K个map任务,除非你设置的mapred.map.tasks参数比这个数还要大。最终InputFormat 决定了map任务的个数。
Map任务的个数也能通过使用JobConf 的 conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。
Reduce任务的个数
正确的reduce任务的 个数应该是0.95或者1.75 ×(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。
目前reduce任务的数量 由于输出文件缓冲区大小(io.buffer.size × 2 ×reduce任务个数 << 堆大小),被限制在大约1000个左右。直到能够指定一个固定的上限后,这个问题最终会被解决。
Reduce任务的数量同时也控制着输出目录下输出文件的数量,但是通常情况下这并不重要,因为下一阶段的 map/reduce任务会把他们分割成更加小的片段。
Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

<script type="text/javascript"> $(function () { $('pre.prettyprint code').each(function () { var lines = $(this).text().split('\n').length; var $numbering = $('<ul/>').addClass('pre-numbering').hide(); $(this).addClass('has-numbering').parent().append($numbering); for (i = 1; i <= lines; i++) { $numbering.append($('<li/>').text(i)); }; $numbering.fadeIn(1700); }); }); </script>
分享到:
评论

相关推荐

    hadoop中map/reduce

    配置Eclipse连接远程Hadoop集群时,需要确保集群的HDFS和MapReduce服务正常运行,并且在Eclipse中设置正确的Hadoop配置文件路径,以及集群的主机地址和端口。 在文档《Eclipse3.3_(windows7)连接远程hadoop(RedHat....

    hadoop map-reduce turorial

    在Hadoop Map-Reduce中,输入数据被划分为小块,每个块被分配给不同的Map任务处理。Map任务将处理后的结果输出,这些输出会被排序后分配给Reduce任务进一步处理。最终,Reduce任务将整合的数据写回到文件系统中,...

    Windows平台下Hadoop的Map/Reduce开发

    在Windows平台上进行Hadoop的Map/Reduce开发可能会比在Linux环境下多一些挑战,但通过详细的步骤和理解Map/Reduce的工作机制,开发者可以有效地克服这些困难。以下是对标题和描述中涉及知识点的详细说明: **Hadoop...

    Hadoop Map-Reduce教程

    在 Hadoop Map-Reduce 中,数据处理过程主要分为两个阶段:**Map 阶段** 和 **Reduce 阶段**。 ##### Map 阶段 Map 函数接收输入数据块,并将其转换为一系列键值对。这一阶段的主要任务是对输入数据进行预处理,...

    Map-Reduce原理体系架构和工作机制,eclipse与Hadoop集群连接

    此外,通过Eclipse与Hadoop集群的有效连接,开发者可以在本地环境中轻松地编写、测试和调试Map-Reduce程序,进而提高开发效率。在实际应用中,Map-Reduce已经被广泛应用于搜索引擎索引构建、社交网络数据分析、金融...

    远程调用执行Hadoop Map/Reduce

    本篇文章将深入探讨“远程调用执行Hadoop Map/Reduce”的概念、原理及其实现过程,同时结合标签“源码”和“工具”,我们将涉及到如何通过编程接口与Hadoop集群进行交互。 Hadoop MapReduce是一种编程模型,用于大...

    hadoop,map,reduce,hdfs

    Hadoop生态系统中还有一些工具可以帮助管理员更好地管理和维护集群,如ZooKeeper、Pig、HBase等。 综上所述,Hadoop是一个功能强大的分布式计算框架,通过HDFS和MapReduce等核心组件,为大数据处理提供了高效的解决...

    hadoop map reduce 中文教程

    每个案例都详细列出了实践步骤,包括如何编写 Map 和 Reduce 函数、如何配置 Hadoop 环境、如何运行 MapReduce 任务等。 #### 六、总结 Hadoop MapReduce 是一种非常强大的分布式数据处理工具,它通过简单的编程...

    Hadoop Map Reduce教程

    该框架将任务分解为一系列较小的任务(Map 和 Reduce),并在集群中的多台计算机上并行执行这些任务。 - **应用场景**:适用于大数据分析、搜索引擎索引构建、日志文件分析等场景。 #### 二、MapReduce 工作原理 1...

    hadoop中Map-Reduce使用示例,输入(DBInputFormat),输出(DBOu-MR_HBase.zip

    在Hadoop生态系统中,MapReduce是一种分布式计算框架,用于处理和生成大规模数据集。这个示例,"MR_HBase-Hadoop中的MapReduce使用示例,输入(DBInputFormat),输出(DBOutputFormat)",主要展示了如何利用MapReduce...

    最高气温 map reduce hadoop 实例

    总结起来,这个“最高气温 map reduce hadoop 实例”展示了如何利用Hadoop MapReduce框架处理和分析大量气温数据,寻找全局的最高气温。通过理解MapReduce的工作流程,以及如何编写和运行对应的Mapper和Reducer代码...

    hadoop map reduce hbase 一人一档

    标题“hadoop map reduce hbase 一人一档”揭示了这个系统的核心组成部分。Hadoop MapReduce是一种分布式计算框架,用于处理和存储大规模数据集。它通过将复杂任务分解为可并行处理的“映射”和“化简”阶段,使得在...

    hadoop Join代码(map join 和reduce join)

    本文将深入探讨Map JOIN和Reduce JOIN两种在Hadoop中实现JOIN的方法,并通过代码示例来阐述它们的工作原理。 1. Map JOIN: Map JOIN在Hadoop中主要应用于小表与大表的连接。小表的数据可以完全加载到内存中,而大...

    第02节:hadoop精讲之map reduce原理及代码.pdf

    用户编写Map函数和Reduce函数,然后交给Hadoop框架进行处理。Map函数处理输入的键值对数据,生成中间键值对数据;Reduce函数再将这些中间键值对按键进行归约,产生最终的输出结果。这个过程可以在大量数据集上进行,...

    Hadoop示例程序WordCount运行及详解

    总结来说,本文详细讲解了Hadoop平台上WordCount的实现,包括map-reduce模型的应用、Java编程语言的应用和Hadoop命令行工具的使用等。本文可以作为学习Hadoop的map-reduce模型和词频统计技术的参考。

    基于Hadoop-Map Reduce的算法.zip

    在实际应用中,Hadoop生态中的其他工具,如Pig、Hive和Spark,常与MapReduce结合使用,以提供更高级别的抽象和优化。例如,Pig和Hive提供了SQL-like的语言接口,使得非程序员也能轻松处理MapReduce作业;Spark则通过...

    第02节:hadoop精讲之map reduce原理及代码.rar

    MapReduce的工作机制分为两个主要阶段:Map阶段和Reduce阶段,这两个阶段之间通过中间结果 Shuffle 和 Sort 阶段连接。 1. Map阶段:在这个阶段,原始输入数据被分割成多个小块(Split),每个Split会被分配到集群...

    Hadoop Map Reduce 教程.doc

    Hadoop Map Reduce 教程.doc

    论文研究-Hadoop平台中一种Reduce负载均衡贪心算法 .pdf

    Hadoop平台中一种Reduce负载均衡贪心算法,刘朵,曾锋,MapReduce是目前广泛应用的并行计算框架,是Hadoop平台的重要组成部分。主要包括Map函数和Reduce函数。Map函数输出key-value键值对作为Reduce的

Global site tag (gtag.js) - Google Analytics