package com.wenbronk.javaes;
import java.net.InetSocketAddress;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Map.Entry;
import org.elasticsearch.action.ListenableActionFuture;
import org.elasticsearch.action.get.GetRequestBuilder;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.search.SearchType;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.text.Text;
import org.elasticsearch.common.transport.InetSocketTransportAddress;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.IndicesQueryBuilder;
import org.elasticsearch.index.query.NestedQueryBuilder;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.QueryStringQueryBuilder;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.index.query.SpanFirstQueryBuilder;
import org.elasticsearch.index.query.WildcardQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.junit.Before;
import org.junit.Test;
/**
* java操作查询api
* @author 231
*
*/
public class JavaESQuery {
private TransportClient client;
@Before
public void testBefore() {
Settings settings = Settings.settingsBuilder().put("cluster.name", "wenbronk_escluster").build();
client = TransportClient.builder().settings(settings).build()
.addTransportAddress(new InetSocketTransportAddress(new InetSocketAddress("192.168.50.37", 9300)));
System.out.println("success to connect escluster");
}
/**
* 使用get查询
*/
@Test
public void testGet() {
GetRequestBuilder requestBuilder = client.prepareGet("twitter", "tweet", "1");
GetResponse response = requestBuilder.execute().actionGet();
GetResponse getResponse = requestBuilder.get();
ListenableActionFuture<GetResponse> execute = requestBuilder.execute();
System.out.println(response.getSourceAsString());
}
/**
* 使用QueryBuilder
* termQuery("key", obj) 完全匹配
* termsQuery("key", obj1, obj2..) 一次匹配多个值
* matchQuery("key", Obj) 单个匹配, field不支持通配符, 前缀具高级特性
* multiMatchQuery("text", "field1", "field2"..); 匹配多个字段, field有通配符忒行
* matchAllQuery(); 匹配所有文件
*/
@Test
public void testQueryBuilder() {
// QueryBuilder queryBuilder = QueryBuilders.termQuery("user", "kimchy");
QueryBUilder queryBuilder = QueryBuilders.termQuery("user", "kimchy", "wenbronk", "vini");
QueryBuilders.termsQuery("user", new ArrayList<String>().add("kimchy"));
// QueryBuilder queryBuilder = QueryBuilders.matchQuery("user", "kimchy");
// QueryBuilder queryBuilder = QueryBuilders.multiMatchQuery("kimchy", "user", "message", "gender");
QueryBuilder queryBuilder = QueryBuilders.matchAllQuery();
searchFunction(queryBuilder);
}
/**
* 组合查询
* must(QueryBuilders) : AND
* mustNot(QueryBuilders): NOT
* should: : OR
*/
@Test
public void testQueryBuilder2() {
QueryBuilder queryBuilder = QueryBuilders.boolQuery()
.must(QueryBuilders.termQuery("user", "kimchy"))
.mustNot(QueryBuilders.termQuery("message", "nihao"))
.should(QueryBuilders.termQuery("gender", "male"));
searchFunction(queryBuilder);
}
/**
* 只查询一个id的
* QueryBuilders.idsQuery(String...type).ids(Collection<String> ids)
*/
@Test
public void testIdsQuery() {
QueryBuilder queryBuilder = QueryBuilders.idsQuery().ids("1");
searchFunction(queryBuilder);
}
/**
* 包裹查询, 高于设定分数, 不计算相关性
*/
@Test
public void testConstantScoreQuery() {
QueryBuilder queryBuilder = QueryBuilders.constantScoreQuery(QueryBuilders.termQuery("name", "kimchy")).boost(2.0f);
searchFunction(queryBuilder);
// 过滤查询
// QueryBuilders.constantScoreQuery(FilterBuilders.termQuery("name", "kimchy")).boost(2.0f);
}
/**
* disMax查询
* 对子查询的结果做union, score沿用子查询score的最大值,
* 广泛用于muti-field查询
*/
@Test
public void testDisMaxQuery() {
QueryBuilder queryBuilder = QueryBuilders.disMaxQuery()
.add(QueryBuilders.termQuery("user", "kimch")) // 查询条件
.add(QueryBuilders.termQuery("message", "hello"))
.boost(1.3f)
.tieBreaker(0.7f);
searchFunction(queryBuilder);
}
/**
* 模糊查询
* 不能用通配符, 不知道干啥用
*/
@Test
public void testFuzzyQuery() {
QueryBuilder queryBuilder = QueryBuilders.fuzzyQuery("user", "kimch");
searchFunction(queryBuilder);
}
/**
* 父或子的文档查询
*/
@Test
public void testChildQuery() {
QueryBuilder queryBuilder = QueryBuilders.hasChildQuery("sonDoc", QueryBuilders.termQuery("name", "vini"));
searchFunction(queryBuilder);
}
/**
* moreLikeThisQuery: 实现基于内容推荐, 支持实现一句话相似文章查询
* {
"more_like_this" : {
"fields" : ["title", "content"], // 要匹配的字段, 不填默认_all
"like_text" : "text like this one", // 匹配的文本
}
}
percent_terms_to_match:匹配项(term)的百分比,默认是0.3
min_term_freq:一篇文档中一个词语至少出现次数,小于这个值的词将被忽略,默认是2
max_query_terms:一条查询语句中允许最多查询词语的个数,默认是25
stop_words:设置停止词,匹配时会忽略停止词
min_doc_freq:一个词语最少在多少篇文档中出现,小于这个值的词会将被忽略,默认是无限制
max_doc_freq:一个词语最多在多少篇文档中出现,大于这个值的词会将被忽略,默认是无限制
min_word_len:最小的词语长度,默认是0
max_word_len:最多的词语长度,默认无限制
boost_terms:设置词语权重,默认是1
boost:设置查询权重,默认是1
analyzer:设置使用的分词器,默认是使用该字段指定的分词器
*/
@Test
public void testMoreLikeThisQuery() {
QueryBuilder queryBuilder = QueryBuilders.moreLikeThisQuery("user")
.like("kimchy");
// .minTermFreq(1) //最少出现的次数
// .maxQueryTerms(12); // 最多允许查询的词语
searchFunction(queryBuilder);
}
/**
* 前缀查询
*/
@Test
public void testPrefixQuery() {
QueryBuilder queryBuilder = QueryBuilders.matchQuery("user", "kimchy");
searchFunction(queryBuilder);
}
/**
* 查询解析查询字符串
*/
@Test
public void testQueryString() {
QueryBuilder queryBuilder = QueryBuilders.queryStringQuery("+kimchy");
searchFunction(queryBuilder);
}
/**
* 范围内查询
*/
public void testRangeQuery() {
QueryBuilder queryBuilder = QueryBuilders.rangeQuery("user")
.from("kimchy")
.to("wenbronk")
.includeLower(true) // 包含上界
.includeUpper(true); // 包含下届
searchFunction(queryBuilder);
}
/**
* 跨度查询
*/
@Test
public void testSpanQueries() {
QueryBuilder queryBuilder1 = QueryBuilders.spanFirstQuery(QueryBuilders.spanTermQuery("name", "葫芦580娃"), 30000); // Max查询范围的结束位置
QueryBuilder queryBuilder2 = QueryBuilders.spanNearQuery()
.clause(QueryBuilders.spanTermQuery("name", "葫芦580娃")) // Span Term Queries
.clause(QueryBuilders.spanTermQuery("name", "葫芦3812娃"))
.clause(QueryBuilders.spanTermQuery("name", "葫芦7139娃"))
.slop(30000) // Slop factor
.inOrder(false)
.collectPayloads(false);
// Span Not
QueryBuilder queryBuilder3 = QueryBuilders.spanNotQuery()
.include(QueryBuilders.spanTermQuery("name", "葫芦580娃"))
.exclude(QueryBuilders.spanTermQuery("home", "山西省太原市2552街道"));
// Span Or
QueryBuilder queryBuilder4 = QueryBuilders.spanOrQuery()
.clause(QueryBuilders.spanTermQuery("name", "葫芦580娃"))
.clause(QueryBuilders.spanTermQuery("name", "葫芦3812娃"))
.clause(QueryBuilders.spanTermQuery("name", "葫芦7139娃"));
// Span Term
QueryBuilder queryBuilder5 = QueryBuilders.spanTermQuery("name", "葫芦580娃");
}
/**
* 测试子查询
*/
@Test
public void testTopChildrenQuery() {
QueryBuilders.hasChildQuery("tweet",
QueryBuilders.termQuery("user", "kimchy"))
.scoreMode("max");
}
/**
* 通配符查询, 支持 *
* 匹配任何字符序列, 包括空
* 避免* 开始, 会检索大量内容造成效率缓慢
*/
@Test
public void testWildCardQuery() {
QueryBuilder queryBuilder = QueryBuilders.wildcardQuery("user", "ki*hy");
searchFunction(queryBuilder);
}
/**
* 嵌套查询, 内嵌文档查询
*/
@Test
public void testNestedQuery() {
QueryBuilder queryBuilder = QueryBuilders.nestedQuery("location",
QueryBuilders.boolQuery()
.must(QueryBuilders.matchQuery("location.lat", 0.962590433140581))
.must(QueryBuilders.rangeQuery("location.lon").lt(36.0000).gt(0.000)))
.scoreMode("total");
}
/**
* 测试索引查询
*/
@Test
public void testIndicesQueryBuilder () {
QueryBuilder queryBuilder = QueryBuilders.indicesQuery(
QueryBuilders.termQuery("user", "kimchy"), "index1", "index2")
.noMatchQuery(QueryBuilders.termQuery("user", "kimchy"));
}
/**
* 查询遍历抽取
* @param queryBuilder
*/
private void searchFunction(QueryBuilder queryBuilder) {
SearchResponse response = client.prepareSearch("twitter")
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setScroll(new TimeValue(60000))
.setQuery(queryBuilder)
.setSize(100).execute().actionGet();
while(true) {
response = client.prepareSearchScroll(response.getScrollId())
.setScroll(new TimeValue(60000)).execute().actionGet();
for (SearchHit hit : response.getHits()) {
Iterator<Entry<String, Object>> iterator = hit.getSource().entrySet().iterator();
while(iterator.hasNext()) {
Entry<String, Object> next = iterator.next();
System.out.println(next.getKey() + ": " + next.getValue());
if(response.getHits().hits().length == 0) {
break;
}
}
}
break;
}
// testResponse(response);
}
/**
* 对response结果的分析
* @param response
*/
public void testResponse(SearchResponse response) {
// 命中的记录数
long totalHits = response.getHits().totalHits();
for (SearchHit searchHit : response.getHits()) {
// 打分
float score = searchHit.getScore();
// 文章id
int id = Integer.parseInt(searchHit.getSource().get("id").toString());
// title
String title = searchHit.getSource().get("title").toString();
// 内容
String content = searchHit.getSource().get("content").toString();
// 文章更新时间
long updatetime = Long.parseLong(searchHit.getSource().get("updatetime").toString());
}
}
/**
* 对结果设置高亮显示
*/
public void testHighLighted() {
/* 5.0 版本后的高亮设置
* client.#().#().highlighter(hBuilder).execute().actionGet();
HighlightBuilder hBuilder = new HighlightBuilder();
hBuilder.preTags("<h2>");
hBuilder.postTags("</h2>");
hBuilder.field("user"); // 设置高亮显示的字段
*/
// 加入查询中
SearchResponse response = client.prepareSearch("blog")
.setQuery(QueryBuilders.matchAllQuery())
.addHighlightedField("user") // 添加高亮的字段
.setHighlighterPreTags("<h1>")
.setHighlighterPostTags("</h1>")
.execute().actionGet();
// 遍历结果, 获取高亮片段
SearchHits searchHits = response.getHits();
for(SearchHit hit:searchHits){
System.out.println("String方式打印文档搜索内容:");
System.out.println(hit.getSourceAsString());
System.out.println("Map方式打印高亮内容");
System.out.println(hit.getHighlightFields());
System.out.println("遍历高亮集合,打印高亮片段:");
Text[] text = hit.getHighlightFields().get("title").getFragments();
for (Text str : text) {
System.out.println(str.string());
}
}
}
}
分享到:
相关推荐
本文将详细介绍如何构建一个封装了基本增删改查功能的Elasticsearch Java工具类。 首先,我们需要引入Elasticsearch的Java客户端依赖。在Maven项目中,可以在pom.xml文件中添加以下依赖: ```xml <groupId>org....
query.should(QueryBuilders.fuzzyQuery("title", "搜索")); SearchRequest searchRequest = new SearchRequest("documents"); searchRequest.source().query(query); SearchResponse response = client.search...
searchSourceBuilder.query(QueryBuilders.matchQuery("your_field", "your_value")); // 查询条件 searchRequest.source(searchSourceBuilder); SearchResponse searchResponse = client.search(searchRequest); `...
首先,SpringBoot作为当前最流行的Java Web开发框架之一,提供了简化开发流程、自动配置等特性,使得开发者能够快速构建应用程序。而Elasticsearch是一款强大的分布式搜索引擎,广泛应用于大数据分析、日志收集和...
Elasticsearch是一款强大的开源搜索引擎,广泛应用于大数据分析、日志收集、实时搜索等领域。...Elasticsearch的Java API提供了丰富的类和方法,让开发者能灵活地构建高效、可靠的搜索和分析解决方案。
Java操作Elasticsearch 5.x的Demo详解 在大数据时代,Elasticsearch作为一个高效、可扩展的全文搜索引擎,被广泛应用于日志分析、实时...希望这个简单的Java操作Elasticsearch 5.x的Demo能帮助你开始这段探索之旅。
searchSourceBuilder.query(QueryBuilders.matchQuery("message", "elasticsearch")); searchRequest.source(searchSourceBuilder); SearchResponse searchResponse = client.search(searchRequest, RequestOptions...
Java API是与Elasticsearch进行交互的主要方式之一,使得开发者能够便捷地在Java应用中集成Elasticsearch的功能。本文档主要涵盖了Elasticsearch 5.6.3版本的Java客户端使用方法和相关知识点。 ### 1. 安装与配置 ...
在Java开发中,Elasticsearch是一个非常流行的分布式搜索引擎和数据分析平台。它提供了强大的全文搜索、实时分析和数据存储功能。本篇文章将详细讲解如何使用Java API来调用Elasticsearch,涉及连接、查询、分页、...
.add(client.prepareSearch("my_index").setQuery(QueryBuilders.matchQuery("message", "testing"))) .get(); ``` ##### 4. Using Aggregations 聚合是搜索结果的一种统计分析方式。 - **示例**: ```java ...
searchSourceBuilder.query(QueryBuilders.matchQuery("field1", "query_value")); SearchRequest searchRequest = new SearchRequest("my_index"); searchRequest.source(searchSourceBuilder); SearchResponse ...
Elasticsearch 5.1.1 是一个高度可扩展、实时的搜索和分析引擎,它基于Java开发并广泛应用于大数据的检索、分析和存储。Java API是Elasticsearch与Java应用程序进行交互的主要方式,提供了丰富的类库和方法,使得...
Java 操作 Elasticsearch 案例解析 本文主要介绍了 Java 操作 Elasticsearch 的案例解析,通过示例代码详细介绍了 Java 语言如何操作 Elasticsearch 服务。文章中首先介绍了 Elasticsearch 官方提供的 Java 语言 ...
这个客户端实现了RESTful API,使开发者能够用Java代码轻松地执行各种操作,如创建、更新、删除文档以及执行搜索查询。 ### 3. 创建索引 使用Java API,可以方便地创建索引。`CreateIndexRequest`类用于定义请求,...
Java API是与Elasticsearch进行交互的主要方式之一,它提供了丰富的功能来创建、更新、查询和管理索引。 首先,我们需要在项目中引入Elasticsearch的Java客户端库。通常,我们会使用Maven或Gradle作为构建工具,将...
分布式搜索 Elasticsearch Java API 之(五)------ 搜索 Elasticsearch 是一个基于Lucene的搜索引擎,提供了强大的搜索功能。Java API 是 Elasticsearch 的一个重要组件,允许开发者使用 Java 语言来构建搜索应用...
4. **查询操作**:Elasticsearch提供了丰富的查询API,如`SearchResponse response = client.prepareSearch(indexName).setTypes(typeName).setQuery(QueryBuilders.matchQuery("field", "value")).execute().action...
searchSourceBuilder.query(QueryBuilders.matchQuery("field", "query_value")); searchRequest.source(searchSourceBuilder); SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT...
在 Java 中,可以使用`QueryBuilders`类来构建查询条件,然后调用`search`方法执行查询。查询结果会封装在`SearchResponse`对象中,可以通过`getHits`获取匹配的文档。 3. **删除(Delete)**: 要删除特定文档,...