`

SICP学习笔记之一迭代与递归(1)

阅读更多

SICP学习笔记之一迭代与递归(1)

 

最近开始学学习《SICP(计算机程序的构造和解释)》,不愧是当年MIT的教材,全本书都是干货,每个章节的每个小节都值得认真推敲,仔细思考,自我感觉收获很大。因此我把自己的学习过程通过系列博客分享给大家,望多多交流。

 

递归与迭代,是计算机算法的重要组成部分,我们都懂得简单的二叉树遍历与二分查找,但是很少有人深入思考二者之间的异同以及关系。这第一篇博客,就跟大家分享一下自己关于递归与迭代的思考。

 

1 线性递归与迭代

栗一 阶乘的计算

对于阶乘的计算,相信大家都不陌生,考虑到阶乘的定义:

n! = n*(n-1)*(n-2)*…*2*1

我们可以有很多种方式计算,最简单的就是一个递归算法了,即n!= n*(n-1)!

对应的代码也很简单,我就不多讲了,在此,给出Lisp与Python两种语言的示例:

 

;用来递归计算阶乘的方法
(define (recursion_fun num)
  (if (> num 0)
      (* num (recursion_fun (- num 1)))
      1))

 

 

 

#用递归计算阶乘的方法
def  factorial_recursion(n):
         if n == 1:
                   return 1
         else:
                   return n*factorial_recursion(n-1)

 

 

以6!的计算为例,其计算过程展开如图1所示:



 

 

图1  计算6!的线性递归过程

 

注意到上述计算过程的“形状”,因为其过程只有“一条线”,因此被形象地称为线性递归

 

其实,对于这种线性递归,我们可以很容易地改为迭代算法。对于阶乘的计算,我们可以换一个角度描述:先将1与2相乘,将得到的结果乘以3,然后再乘以4,这样一直乘到n。而在这个过程中,我们实际上一直在维护着一个中间结果,让它像“滚雪球”一样越乘越大,每一步都只是求一个乘积而已,因此我们完全可以用迭代算法重写我们的程序:

 

;用迭代计算阶乘的方法
(define (iteration_fun middle_result num maxnum)
  (if (> num maxnum)
      middle_result
      (iteration_fun (* middle_result num)
                     (+ num 1)
                     maxnum))
  )
;计算阶乘的方法
(define (factorial num)
  (iteration_fun 1 1 num))

 

 

 

#用迭代计算阶乘的方法
def factorial(n):
         factorial_iteration(1, 1, n)
def factorial_iteration(middle_result, n, max):
         if n > max:
                   return middle_result
         else:
                   return n*factorial_iteration(middle_result, n+1, max)

 

 

 

在这里,我们同样以6!的计算为例,分析一下这里的计算过程:



 

 

图2  计算6!的迭代过程

 

对比一下两个过程,二者都需要与n成正比的步骤完成计算,即O(n)的时间复杂度,然而,如果考虑到两者的“形状”,二者情况就大不相同了:

在第一个过程中,显示的是一种先展开后收缩的形状,即函数层层调用但因为无法得到返回值而延迟执行,直到最后一层才得到返回值,进而层层“收缩”的到的最终结果。因此,在过程中我们不得不保存所有的延迟执行的函数 “链条”,直到得到返回值才层层回归释放这长长的链条,“递归”这个词本身就是对这一过程的形象概括。

而在第二个过程中,没有任何的展开与收缩。每步运算中,需要的只是middle_result,num和maxnum这3个变量,只要得到这三个值,函数就能马上得到下一步的结果,不存在延迟执行。可以说,无论计算了几步,3个变量都保存了至今为止所有计算的成果,不需额外保存一条“链条”。

 

分析到这里,我想大家对于迭代和递归各自的特点已经有一定认识了:首先,由于要在过程中额外保存延迟执行的函数链,递归算法的空间复杂度,即内存占用,通常高于迭代算法,在本例中,递归算法为O(n),迭代算法为O(1);其次,由于存在延迟执行,递归算法的灵活性显然不如递归算法,比如,在迭代算法中,我们可以在它执行任意步时暂停,并在需要时随时继续我们的运算(只要我们正确保存了3个变量当前的值)。而递归算法则很难完成这一点,因为他的计算过程需要保存的东西太多。

试想一下,如果有一项大型运算任务,可能耗时数日甚至数月,在如此长的时间跨度中,如果出现意外,比如最容易想到也最可怕的停电,对于迭代算法来说,受到的影响可能很小,因为每步运算后只需保存不太多的结果即可保证下一步运算继续,因此只要定时把计算结果保存到硬盘中,就可以保住运算成果,需要时“存档读档”就可以继续运算;而对于递归算法,这种变故就可能是灾难性的: 递归时的“延迟函数链”通常需要存在内存中(备份到硬盘可是很耗资源的,不现实),一旦有一环丢失运算都难以继续了,只能从头再来,而内存掉电不储存的特性恰恰使这种情况极易发生,因此从这个角度看,递归算法本身就是“十分脆弱”的。因此,我们有理由猜测,大型运算中迭代的应用一定比递归普遍。

好了,前面讲了这么多,大家不要误解,我没有丝毫贬低递归的意思,其实,相比于迭代,递归的优势也是很明显的,那就是易于描述和理解,这点对比一下上文中的代码行数就一目了然了。我的理解是,如果把问题比作迷宫,算法用来找到起点到终点的路径,那么递归法倾向于从终点向起点出发解决问题,这样通常只有一条路径到达起点,因此可以更快更容易地解决问题;而迭代算法则更像是从起点出发寻找终点,因此遇到的困难通常会更多些。

为了加深大家对于迭代与递归算法的理解,下面我再举几个栗子,揭示二者更多的特征。

 

2 树形递归与迭代

上面的阶乘计算的例子中,不论是递归还是迭代,其运算步骤都与n成线性增长,因此被称为线性递归与线性迭代。与之对应的还有树形递归,请看下面的栗子:

栗2  斐波那契(Fibonacci)数列的计算

斐波那契数列,其定义很简单,除前两项外,数列中的每一项都是前两项的和:

0,1,1,2,3,5,8,13,21…

写成函数形式为:

 

毫无疑问,这个数列用地递归算法的实现是很简单的:

 

;用递归计算斐波那契数列的方法
(define (fib_recursion n)
  (if (= n 0)
      0
      (if (= n 1)
          1
          (+ (fib_recursion (- n 1)) (fib_recursion (- n 2))))))

 

#递归法计算斐波那契数列的方法
def fib_recursion(n):
	if n == 0:
		return 0
	elif n == 1:
		return 1
	elif n > 1:
		return fib_recursion(n-1)+fib_recursion(n-2)

 

 

图3是以fib(5)的计算为例给出的算法计算过程:

 

 图3 计算fib 5产生的树形递归过程

考虑这一过程,为了计算fib(5),我们需要计算fib(4)与fib(3),为了计算fib(4),又要计算fib(3)和fib(2),按照此规则,我们会发现其过程展开像一棵树,如图3所示,其中每层分裂为两个分支(除了最下面),反映了函数每层两次调用自身。

   

上面的过程,作为典型树形递归具有教育意义,但是作为计算斐波那契数列的方法,它做了太多的冗余计算——在这里,计算了2次fib(3),3次fib(2),5次fib(1)…想象一下,如果现在我们要计算fib 6,那么我们不光要再计算一遍fib(5),还得计算一遍fib(4),而后者显然相当于前者工作量的一半以上,也就是说,计算fib(6)的工作量至少是fib(5) 的1.5倍以上,这个算法的计算步数是随着n成指数增长的!

事实上,fib(n)是最接近 <!--[endif]-->的整数(证明见附录),也就是说仅计算fib(100)所需要的计算次数就是6x10^20次,按照家用计算机200亿次/秒的运算速度(非官方数据),需要计算900多年,即使是我们全人类最快的“天河二号”超级计算机,也至少需要计算3小时才能完成。很显然,这个算法效率低的令人发指!

我们也可以提出一种计算斐波那契数列的的迭代过程,其基本思路就是将a和b赋予初值fib(1) = 1和fib(0) = 0,然后不断使用下面的变换规则:

 

这样,在应用n次这样的变换后,a和b将分别等于fib(n+1)和fib(n)。同样的,我们不难把它翻译成代码:

 

;用迭代计算斐波那契数列的方法
(define (fib n)
  (fib_iteration 1 0 n))

(define (fib_iteration a b count)
  (if (= count 0)
      b
      (fib_iteration (+ a b)
                           a
                           (- count 1))))

 

#迭代法计算斐波那契数列的方法
def fib(n):
	return fib_iteration(1,0,n)
def fib_iteration(a,b,n):
	if n == 0:
		return b
	else:
		return fib_iteration(a+b,a,n-1)

 

 

显然,此迭代算法计算抓住了斐波那契数列运算的本质,即fib(n+1)和fib(n)两个变量的“滚雪球”式变换,因此在中间结果中不光保存fib(n),还保存了fib(n+1)的值,从而避免了树形递归中出现的大量冗余计算,提高了效率。不难证明,迭代计算fib(100)只要100次加法即可,这是我们用铅笔就可以完成的任务;同时,整个过程也只需要3个变量的内存,不需要保存庞大的递归树。

 

 

       在本栗中,递归算法似乎又是完败,不过我们也不要小视递归算法这个“安静的美男子”,很多情况下,递归算法仍是给力的工具。下一篇博客,笔者就会举几个用递归方法容易解决而难以用迭代算法解决的栗子,展示递归算法的强大。大家拭目以待吧!

  • 大小: 7.4 KB
  • 大小: 45.3 KB
  • 大小: 2.2 KB
  • 大小: 17.5 KB
  • 大小: 1.1 KB
  • 大小: 608 Bytes
2
0
分享到:
评论

相关推荐

    SICP 习题答案

    - **迭代与循环**:虽然函数式编程倾向于使用递归,但SICP也讨论了迭代结构,如do循环和while循环。 7. **过程的组合与复合**: - **过程复合**:将简单过程组合成复杂过程,以实现更复杂的计算逻辑。 - **局部...

    SICP习题解答,主要第一章的内容习题答案

    本资料集包含了对SICP第一章习题的解答,旨在帮助学习者巩固基础,深化对函数式编程的理解。 首先,让我们关注一下习题解答中的几个关键部分: 1. **1.6.ss**: 这部分可能涉及到函数定义、递归和过程抽象。SICP的...

    SICP中文第二版

    SICP中文第二版SICP中文第二版SICP中文第二版SICP中文第二版SICP中文第二版

    SICP LISP AI

    5. **控制结构和计算的表示**:书中详细分析了条件表达式、迭代和递归等控制结构,并探讨了如何用过程来模拟不同的计算模型,如图灵机和微处理器。 6. **对象和模拟**:通过引入面向对象的概念,SICP展示了如何用...

    SICP 解题集

    《SICP解题集》是一份专注于探讨和解答《结构与解释程序》(Structure and Interpretation of Computer Programs,简称SICP)一书中习题的资源。SICP是计算机科学领域的一本经典教材,由Harold Abelson、Gerald Jay ...

    精通递归程序设计

    - [《Structure and Interpretation of Computer Programs》](https://mitpress.mit.edu/sites/default/files/sicp.pdf) —— 一本经典教材,深入探讨了递归和其他计算机科学主题。 - [《Programming Pearls》]...

    sicp第二章练习题的解答

    在SICP中,练习2.5通常涉及到了过程定义、抽象和组合,可能需要读者理解并实现一种计算机制,如迭代或递归。 2. **chapter2.ss**: 这可能是整个第二章所有练习题的集合或者部分题目的解答。通过这个文件,读者可以...

    sicp 2.2.4节图形语言

    《SICP 2.2.4 节:图形语言》是计算机科学经典教材《结构与解释程序》(Structure and Interpretation of Computer Programs)中的一个重要章节,它深入介绍了如何利用编程来创建图形,以及如何设计和理解复杂的计算...

    a_book_sicp_py

    3. 计算机科学的基础概念:《计算机科学的构造与解释》(SICP)一书涵盖了计算机科学的基础概念,例如程序的解释、计算过程和数据抽象。这些概念是构建更高级抽象和理解计算机如何操作数据的基石。 4. 使用函数构建...

    sicp-Structure and Interpretation of Computer Programs

    SICP不仅在MIT内部被广泛用作教学材料,而且在全球范围内也享有极高的声誉,被视为学习计算机科学理论基础的必读之作。 #### 二、书籍内容概览 SICP的内容涵盖了程序设计的基本概念、过程抽象、数据抽象、模块化...

    SICP(python中文带书签)

    《计算机程序的构造与解释》(Structure and Interpretation of Computer Programs,简称SICP)是一本备受推崇的经典计算机科学教材,由Harold Abelson和Gerald Jay Sussman撰写,并由MIT出版社出版。这本书以其深入...

    sicp 2016 from

    **《结构与解释计算机程序》(Structure and Interpretation of Computer Programs, SICP)** 是由哈佛大学的 Harold Abelson 和麻省理工学院的 Gerald Jay Sussman 教授共同编著的一本经典教材,该书首次出版于1985...

    sicp in python 中文 sicp 中文

    sicp in python 中文版 sicp in python 中文版 sicp in python 中文版 !!!download&gt;&gt;&gt;https://github.com/wizardforcel/sicp-py-zh

    SICP 计算机程序的构造与解释

    《计算机程序的构造与解释》(Structure and Interpretation of Computer Programs,简称SICP)是一本计算机科学领域的经典教材,由Harold Abelson和Gerald Jay Sussman编写, MIT出版社出版。这本书深入探讨了计算...

    sicp_notes:SICP笔记和练习

    《SICP笔记和练习》是一份详尽的资源,主要涵盖了由MIT教授们编写的经典计算机科学教材《Structure and Interpretation of Computer Programs》(简称SICP)的学习笔记和练习解答。这份资料以HTML格式呈现,便于在线...

    SICP 计算机程序设计与解释 Structure and Interpretation of Computer Program 英文版

    本书作为MIT电气工程与计算机科学系的经典教材之一,深入浅出地讲解了程序设计的基本原理和技术细节。通过本书的学习,读者不仅可以掌握LISP等编程语言的使用技巧,还能深入了解程序设计的思想精髓。 #### 主要知识...

    Learn_sicp:学习sicp的一些代码

    SICP,全称为《Structure and Interpretation of Computer Programs》(计算机程序的结构与解释),是一本经典的计算机科学教材,由Harold Abelson和Gerald Jay Sussman合著,对计算机程序设计的理论和实践进行了...

    SICP(计算机体系结构)

    它是麻省理工学院(MIT)计算机科学课程中的必修教材之一,被广泛认为是学习计算机科学和编程的权威性资源。 #### 二、核心知识点解析 **1. 构建抽象过程** 这一章节主要介绍如何通过过程来构建抽象,使程序员...

    sicp 2nd 英文chm

    《Structure and Interpretation of Computer Programs》(简称SICP)是计算机科学领域的一部经典教材,由Harold Abelson和Gerald Jay Sussman撰写,第二版(2nd Edition)通常被称为SICP 2nd。这本书是麻省理工学院...

Global site tag (gtag.js) - Google Analytics