JVM的GC日志的主要参数包括如下几个:
-XX:+PrintGC 输出GC日志
-XX:+PrintGCDetails 输出GC的详细日志
-XX:+PrintGCTimeStamps 输出GC的时间戳(以基准时间的形式)
-XX:+PrintGCDateStamps 输出GC的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
-XX:+PrintHeapAtGC 在进行GC的前后打印出堆的信息
-Xloggc:../logs/gc.log 日志文件的输出路径
在我做了如下的设置
-XX:+PrintGCDetails -Xloggc:../logs/gc.log -XX:+PrintGCTimeStamps
以后打印出来的日志为:
0.756: [Full GC (System) 0.756: [CMS: 0K->1696K(204800K), 0.0347096 secs] 11488K->1696K(252608K), [CMS Perm : 10328K->10320K(131072K)], 0.0347949 secs] [Times: user=0.06 sys=0.00, real=0.05 secs] 1.728: [GC 1.728: [ParNew: 38272K->2323K(47808K), 0.0092276 secs] 39968K->4019K(252608K), 0.0093169 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 2.642: [GC 2.643: [ParNew: 40595K->3685K(47808K), 0.0075343 secs] 42291K->5381K(252608K), 0.0075972 secs] [Times: user=0.03 sys=0.00, real=0.02 secs] 4.349: [GC 4.349: [ParNew: 41957K->5024K(47808K), 0.0106558 secs] 43653K->6720K(252608K), 0.0107390 secs] [Times: user=0.03 sys=0.00, real=0.02 secs] 5.617: [GC 5.617: [ParNew: 43296K->7006K(47808K), 0.0136826 secs] 44992K->8702K(252608K), 0.0137904 secs] [Times: user=0.03 sys=0.00, real=0.02 secs] 7.429: [GC 7.429: [ParNew: 45278K->6723K(47808K), 0.0251993 secs] 46974K->10551K(252608K), 0.0252421 secs]
我们取倒数第二条记录分析一下各个字段都代表了什么含义
5.617(时间戳): [GC(Young GC) 5.617(时间戳): [ParNew(使用ParNew作为年轻代的垃圾回收期): 43296K(年轻代垃圾回收前的大小)->7006K(年轻代垃圾回收以后的大小)(47808K)(年轻代的总大小), 0.0136826 secs(回收时间)] 44992K(堆区垃圾回收前的大小)->8702K(堆区垃圾回收后的大小)(252608K)(堆区总大小), 0.0137904 secs(回收时间)] [Times: user=0.03(Young GC用户耗时) sys=0.00(Young GC系统耗时), real=0.02 secs(Young GC实际耗时)]
我们再对数据做一个简单的分析
从最后一条GC记录中我们可以看到 Young GC回收了 45278-6723=38555K的内存
Heap区通过这次回收总共减少了 46974-10551=36423K的内存。
38555-36423=2132K说明通过该次Young GC有2132K的内存被移动到了Old Gen,
我们来验证一下
在最后一次Young GC的回收以前 Old Gen的大小为8702-7006=1696
回收以后Old Gen的内存使用为10551-6723=3828
Old Gen在该次Young GC以后内存增加了3828-1696=2132K 与预计的相符
重新设置GC日志的输出
-XX:+PrintGCDetails -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintTenuringDistribution -verbose:gc -Xloggc:gc.log
后可以看到进行GC前后的堆内存信息
{Heap before GC invocations=1 (full 0): PSYoungGen total 152896K, used 131072K [0x00000000f5560000, 0x0000000100000000, 0x0000000100000000) eden space 131072K, 100% used [0x00000000f5560000,0x00000000fd560000,0x00000000fd560000) from space 21824K, 0% used [0x00000000feab0000,0x00000000feab0000,0x0000000100000000) to space 21824K, 0% used [0x00000000fd560000,0x00000000fd560000,0x00000000feab0000) PSOldGen total 349568K, used 0K [0x00000000e0000000, 0x00000000f5560000, 0x00000000f5560000) object space 349568K, 0% used [0x00000000e0000000,0x00000000e0000000,0x00000000f5560000) PSPermGen total 26432K, used 26393K [0x00000000d0000000, 0x00000000d19d0000, 0x00000000e0000000) object space 26432K, 99% used [0x00000000d0000000,0x00000000d19c64a0,0x00000000d19d0000) 2013-05-05T23:16:10.480+0800: 5.228: [GC Desired survivor size 22347776 bytes, new threshold 7 (max 15) [PSYoungGen: 131072K->8319K(152896K)] 131072K->8319K(502464K), 0.0176346 secs] [Times: user=0.03 sys=0.00, real=0.02 secs] Heap after GC invocations=1 (full 0): PSYoungGen total 152896K, used 8319K [0x00000000f5560000, 0x0000000100000000, 0x0000000100000000) eden space 131072K, 0% used [0x00000000f5560000,0x00000000f5560000,0x00000000fd560000) from space 21824K, 38% used [0x00000000fd560000,0x00000000fdd7ff78,0x00000000feab0000) to space 21824K, 0% used [0x00000000feab0000,0x00000000feab0000,0x0000000100000000) PSOldGen total 349568K, used 0K [0x00000000e0000000, 0x00000000f5560000, 0x00000000f5560000) object space 349568K, 0% used [0x00000000e0000000,0x00000000e0000000,0x00000000f5560000) PSPermGen total 26432K, used 26393K [0x00000000d0000000, 0x00000000d19d0000, 0x00000000e0000000) object space 26432K, 99% used [0x00000000d0000000,0x00000000d19c64a0,0x00000000d19d0000) }
[0x00000000f5560000,0x00000000f5560000,0x00000000fd560000)
这种形式的日志有两种意义:
当这种日志出现在generation的详细信息里的时候,三个数字在HotSpot里分别称为low_boundary、high、high_boundary。
low_boundary: reserved space的最低地址边界;通常也跟“low”相等,这是commited space的最低地址边界
high: commited space的最高地址边界
high_boundary: reserved space的最高地址边界。
[low_boundary, high_boundary)范围内的就是reserved space,这个space的大小就是max capacity。
[low, high)范围内的就是commited space,而这个space的大小就是current capacity(当前容量),简称capacity。
capacity有可能在一对最小值和最大值之间浮动。最大值就是上面说的max capacity。
相关推荐
"jvmgc日志分析工具"专为解析和可视化JVM生成的GC日志而设计,帮助开发者识别内存瓶颈,调整内存设置,以及诊断可能的性能问题。 GC日志是JVM在运行过程中记录的关于垃圾收集活动的详细信息,包括垃圾收集的起始...
虽然功能叫hpjmeter简单,界面也不咋地 不过容错性要比hpjmeter强很多,虽然快照中所有性能指标都挤在一起,但是很直观 总体来说比较强悍,特收金币一枚...
JVM 输出 GC 日志导致 JVM 卡住是一个复杂的问题,需要作者通过多方面的分析和监控来定位和解决问题。 知识点: 1. JVM 垃圾回收机制(Garbage Collection,GC) 2. JVM 日志配置,包括 GC 日志、JIT 编译日志和 ...
本文将深入探讨JVM内存结构、`jmap`工具的使用以及如何分析`dump.txt`文件中的内存日志。 1. JVM内存结构: - **堆内存**:这是JVM最大的内存区域,用于存储对象实例。堆内存分为新生代(Young Generation)、老...
1. 在开发和测试环境下,可以通过配置JVM参数来输出GC日志。例如,添加`-XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCApplicationStoppedTime`参数,可以详细记录GC事件,包括简要信息、...
**GChisto GC日志分析工具** 在Java应用程序中,垃圾收集(Garbage Collection, GC)是自动管理内存的关键组成部分。然而,理解GC的工作方式以及它如何影响应用性能可能是一项复杂的任务。这就是GChisto这样的工具...
通过这些工具,我们可以观察GC日志,分析GC性能,找出可能的问题。 7. **垃圾收集器组合**:JDK 11引入了ZGC(Z Garbage Collector),这是一种低延迟的GC,目标是在大堆上实现几乎无暂停时间的垃圾收集。JDK 14...
对gc日志进行统计分析,使用命令:java -jar gcviewer-1.3x.jar gc.log summary.csv [chart.png] [-t PLAIN|CSV|CSV_TS|SIMPLE|SUMMARY]
5. **GC调优**:包括如何分析GC日志,理解GC停顿(Stop-the-World)事件,以及如何通过调整JVM参数来改善系统性能,如设置堆大小、新生代与老年代的比例、存活代的晋升策略等。 6. **性能监控与诊断工具**:如...
5. **内存泄漏检测**:定期检查是否存在内存泄漏,通过分析GC日志或者使用专门的检测工具,定位并修复可能导致内存泄漏的问题。 6. **并行与并发调整**:根据系统硬件资源调整并行GC的线程数(`-XX:...
Java虚拟机GC日志分析 Java虚拟机GC日志分析是Java开发者不可或缺的一项技能,通过对GC日志的分析,可以了解Java虚拟机中的内存使用情况,避免内存溢出和性能问题。本文将对Java虚拟机GC日志分析进行详细的介绍,并...
它提供了CPU和内存使用情况的实时视图,还可以分析线程、监视类加载、JVM配置、GC日志等。通过JavaVisualVM.rar文件,用户可以安装并使用这个强大的工具。 另一个是com-sun-tools-visualvm-modules-visualgc.rar,...
- **详细的GC日志**:IBM JVM支持输出详细的GC日志信息,帮助开发者监控和调试GC行为。 - GC日志可以包括从`System.gc()`调用触发的收集、分配失败时的收集、堆扩展或收缩时的收集等信息。 #### 六、消息与命令行...
4. **GC日志分析**:与垃圾收集(Garbage Collection, GC)相关的日志分析,帮助优化垃圾回收策略,减少不必要的停顿时间。 5. **性能报告**:生成详细的性能报告,包括内存使用趋势、线程活动、类加载统计等,为...
在GC监控方面,除了使用JMX参数外,还可以使用-Xloggc:文件参数来记录GC日志,并通过-XX:+PrintGCDetails等参数打印GC的详细信息。 优化建议包括合理设置堆内存大小,选择合适的垃圾回收器,调整新生代与老年代的...
调优主要涉及选择合适的垃圾收集器,调整堆大小和新生代比例,以及设置GC日志,通过监控GC行为来优化性能。 总结,理解并掌握JVM参数和GC机制是Java开发中的重要技能。通过合理配置JVM参数,我们可以有效控制内存...
诊断这类问题时,首先要确认是否选择了合适的GC策略,其次要检查堆内存的大小设置是否恰当,最后还要分析具体的应用行为和垃圾回收日志,识别出是哪种类型的问题,比如内存泄露、对象分配过快等。 6. 使用IBM JDK的...
2. **GC日志分析**:通过分析GC日志,了解GC行为,找出性能瓶颈。 3. **并行与并发设置**:调整并行GC线程数和并发GC策略,优化性能。 4. **对象存活率预估**:通过调整Survivor区比例,减少Full GC的发生。 5. **...
《深入理解JVM & G1 GC》这篇文章和相关压缩包文件主要聚焦于Java虚拟机(JVM)的内存管理,特别是垃圾收集器(GC)的优化,特别是G1(Garbage-First)垃圾收集器的深度解析。下面将详细阐述JVM、GC的基本概念,...