`
sunqi
  • 浏览: 230109 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

Hive与HBase

 
阅读更多

hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

Hive与HBase的整合功能的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive_hbase-handler.jar工具类

 

 

1 .Hadoop和Hbase都已经成功安装了

Hadoop集群配置:http://sunqi.iteye.com/blog/1432015

hbase安装配置:http://sunqi.iteye.com/blog/1434355

2 . 拷贝hbase-0.90.4.jar和zookeeper-3.3.2.jar到hive/lib下。

注意:如果hive/lib下已经存在这两个文件的其他版本(例如zookeeper-3.3.2.jar),建议删除后使用hbase下的相关版本。

3. 修改hive/conf下hive-site.xml文件,在底部添加如下内容:

  1.  
  2. <property>    
  3.   <name>hive.exec.scratchdir</name>     
  4.   <value>/home/hadoop/hive-0.8.0-bin/tmp</value>     
  5.   
  6. </property>     
  7.   
  8.     
  9. <property>     
  10.   <name>hive.querylog.location</name>     
  11.   <value>/home/hadoop/hive-0.8.0-bin/logs</value>     
  12. </property>     
  13.     
  14. <property>    
  15.   <name>hive.aux.jars.path</name>     
  16.   <value>file:///home/hadoop/hive-0.8.0-bin/lib/hive-hbase-handler-0.8.0.jar,file:///home/hadoop/hive-0.8.0-bin/lib/hbase-0.90.4.jar,file:///home/hadoop/hive-0.8.0-bin/lib/zookeeper-3.3.2.jar</value> 
  17. </property> 
  18.    

 

注意:如果hive-site.xml不存在则自行创建,或者把hive-default.xml.template文件改名后使用。

同时修改其中配置

 

  1.  
  2. <property>
  3.   <name>hive.zookeeper.quorum</name>
  4.   <value>node1,node2,node3</value>
  5.   <description>The list of zookeeper servers to talk to. This is only needed for read/write locks.</description>
  6. </property>
  7.    

 

 

 

1.单节点启动

#bin/hive -hiveconf hbase.master=master:490001

2 集群启动:

#bin/hive



1.创建hbase识别的数据库:

 

  1. CREATE TABLE hbase_table_1(key int, value string)  
  2. STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
  3. WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:qualifier")  
  4. TBLPROPERTIES ("hbase.table.name" = "sunqi");    

 

hbase.table.name 定义在hbase的table名称

hbase.columns.mapping 定义在hbase的列族 


2. 查看数据

hive> select * from  hbase_table_1;  

这时可以登录Hbase去查看数据了
#bin/hbase shell
hbase(main):001:0> describe 'sunqi'  
hbase(main):002:0> scan 'sunqi'  
hbase(main):003:0> put 'sunqi','100','cf1:qualifier','aaaa'


这时在Hive中可以看到刚才在Hbase中插入的数据了。

3 hive访问已经存在的hbase

使用CREATE EXTERNAL TABLE:

  1. CREATE EXTERNAL TABLE hbase_table_2(key int, value string)        
  2. STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
  3. WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:qualifier已存在的列族与 qualifier ")  
  4. TBLPROPERTIES("hbase.table.name" = "已存在的hbase表名"); 

hive> select count(*) from  hbase_table_1;  

 

Total MapReduce jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapred.reduce.tasks=<number>

Starting Job = job_201205231120_0004, Tracking URL = http://node1:50030/jobdetails.jsp?jobid=job_201205231120_0004

Kill Command = /home/hadoop/hadoop-0.20.203.0/bin/../bin/hadoop job  -Dmapred.job.tracker=node1:49001 -kill job_201205231120_0004

Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1

2012-05-23 14:20:35,542 Stage-1 map = 0%,  reduce = 0%

2012-05-23 14:20:41,592 Stage-1 map = 100%,  reduce = 0%

2012-05-23 14:20:53,685 Stage-1 map = 100%,  reduce = 100%

Ended Job = job_201205231120_0004

MapReduce Jobs Launched: 

Job 0: Map: 1  Reduce: 1   HDFS Read: 239 HDFS Write: 2 SUCESS

Total MapReduce CPU Time Spent: 0 msec

OK

1

Time taken: 29.128 seconds

 

 

 

自动会在hadoop上创建Map/Reduce任务,执行统计数据

 

 

 

 

 

 

 

创建表

 

hive> CREATE TABLE pokes (foo INT, bar STRING); 

 

创建表并创建索引字段ds

 

hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING); 

 

显示所有表

 

hive> SHOW TABLES;

 

按正条件(正则表达式)显示表,

 

hive> SHOW TABLES '.*s';

 

表添加一列 

 

hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);

 

添加一列并增加列字段注释

 

hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');

 

更改表名

 

hive> ALTER TABLE events RENAME TO 3koobecaf;

 

删除列

 

hive> DROP TABLE pokes;

 

元数据存储

 

将文件中的数据加载到表中

 

hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes; 

 

加载本地数据,同时给定分区信息

 

hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');

 

加载DFS数据 ,同时给定分区信息

 

hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');

 

The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous. 

 

SQL 操作

 

按先件查询

 

hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';

 

将查询数据输出至目录

 

hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';

 

将查询结果输出至本地目录

 

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;

 

选择所有列到本地目录 

 

hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;

 

hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100; 

 

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;

 

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;

 

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';

 

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;

 

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;

 

将一个表的统计结果插入另一个表中

 

hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;

 

hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;

 

JOIN

 

hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;

 

将多表数据插入到同一表中

 

FROM src

 

INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100

 

INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200

 

INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300

 

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;

 

将文件流直接插入文件

 

hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';

 

This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples) 

 

实际示例

 

创建一个表

 

CREATE TABLE u_data (

 

userid INT,

 

movieid INT,

 

rating INT,

 

unixtime STRING)

 

ROW FORMAT DELIMITED

 

FIELDS TERMINATED BY '\t'

 

STORED AS TEXTFILE;

 

下载示例数据文件,并解压缩

 

wget http://www.grouplens.org/system/files/ml-data.tar__0.gz

 

tar xvzf ml-data.tar__0.gz

 

加载数据到表中

 

LOAD DATA LOCAL INPATH 'ml-data/u.data'

 

OVERWRITE INTO TABLE u_data;

 

统计数据总量

 

SELECT COUNT(1) FROM u_data;

 

现在做一些复杂的数据分析

 

创建一个 weekday_mapper.py: 文件,作为数据按周进行分割 

 

import sys

 

import datetime

 

for line in sys.stdin:

 

line = line.strip()

 

userid, movieid, rating, unixtime = line.split('\t')

 

生成数据的周信息

 

weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()

 

print '\t'.join([userid, movieid, rating, str(weekday)])

 

使用映射脚本

 

//创建表,按分割符分割行中的字段值

 

CREATE TABLE u_data_new (

 

userid INT,

 

movieid INT,

 

rating INT,

 

weekday INT)

 

ROW FORMAT DELIMITED

 

FIELDS TERMINATED BY '\t';

 

//将python文件加载到系统

 

add FILE weekday_mapper.py;

 

将数据按周进行分割

 

INSERT OVERWRITE TABLE u_data_new

 

SELECT

 

TRANSFORM (userid, movieid, rating, unixtime)

 

USING 'python weekday_mapper.py'

 

AS (userid, movieid, rating, weekday)

 

FROM u_data;

 

SELECT weekday, COUNT(1)

 

FROM u_data_new

 

GROUP BY weekday;

分享到:
评论

相关推荐

    hive与hbase整合经验谈

    2. **配置HBase与Hive**:在Hive的配置文件(如`hive-site.xml`)中添加HBase的相关配置,包括Zookeeper地址、HBase的配置路径等。 3. **安装HBase的Hive连接器**:例如,安装`Hive-HBase-Connector`,这是一个允许...

    大数据工具篇之Hive与HBase整合完整教程

    ### 大数据工具篇之Hive与HBase整合完整教程 #### 一、引言 在大数据处理领域,Hive 和 HBase 是两种非常重要的工具。Hive 是一种数据仓库工具,可以用来进行数据提取、转换和加载(ETL),同时提供了一种 SQL ...

    hive和hbase整合

    【Hive与HBase整合详解】 Hive和HBase是两个大数据处理的重要组件。Hive提供了基于SQL的查询语言(HQL)来处理大规模的数据,适合于离线批处理;而HBase则是一个NoSQL数据库,它基于Google的Bigtable设计,提供高...

    hive与hbase整合经验谈.pdf

    Hive与HBase的整合是一个在大数据处理中常遇到的场景,整合之后的系统能够利用HBase的高效随机读写能力和Hive的强大数据查询能力,从而优化处理速度和查询效率。HBase是一个开源的非关系型分布式数据库(NoSQL),而...

    Hive与Hbase的整合

    Hive与Hbase的整合,集中两者的优势,使用HiveQL语言,同时具备了实时性

    scala-hive-HBASE-Api.7z

    Scala、Hive与HBase是大数据处理领域中的关键组件,它们在Java开发环境中扮演着重要角色。本压缩包"scala-hive-HBASE-Api.7z"包含了2019年8月至10月间用于工作的相关jar包,主要用于支持Scala、Hive和HBase的集成...

    HIVE和HBASE的整合

    HIVE和HBASE的整合 HIVE和HBASE是两个不同的数据处理和存储系统,HIVE是一种数据仓库系统,专门用来存储和处理结构化数据,而HBASE是一种NoSQL数据库,专门用来存储和处理半结构化和非结构化数据。由于HIVE和HBASE...

    hive-hbase-handler-1.2.1.jar

    被编译的hive-hbase-handler-1.2.1.jar,用于在Hive中创建关联HBase表的jar,解决创建Hive关联HBase时报FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. org.apache.hadoop....

    hive、Hbase、mysql的区别.docx

    1. Hive与Hbase的区别: - Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL-like语言(HQL)对大数据集进行查询和分析。Hive的设计初衷是为了简化大数据处理,通过将SQL转换为MapReduce任务,适合批处理和...

    Hive整合HBase资源文件.zip

    标题 "Hive整合HBase资源文件.zip" 指向的是一个关于如何将Apache Hive与Apache HBase集成的教程或工具包。Hive是大数据处理领域的一个重要组件,主要用于结构化数据的查询和分析,而HBase则是一个分布式、列式存储...

    hive-hbase-handler-1.2.2.jar

    hive和hbase整合的时候,如果出现不兼容的情况需要手动编译:hive-hbase-hander-1.2.2.jar把这个jar替换掉hive/lib里的那个jar包

    hive和HBASE.zip

    【标题】:Hive与HBase的集成与应用 【描述】:本压缩包包含Apache Hive 1.2.2和HBase 1.2.6的安装包,旨在介绍如何在大数据处理环境中将这两个组件结合使用,实现高效的数据存储和查询。 【标签】:Hive、HBase、...

    hive0.8.1和hbase0.92.0集成的hive-hbase-handler.Jar包

    hive0.8.1和hbase0.92.0集成的hive-hbase-handler.Jar包,里面包含:hbase-0.92.0.jar、hbase-0.92.0-tests.jar、hive-hbase-handler-0.9.0-SNAPSHOT.jar。经测试没有问题。

    浅谈Hive vs. HBase

    ### Hive与HBase的核心知识点详解 #### 一、Hive概览 **1.1 定义** Apache Hive 是一个建立在 Hadoop 上的数据仓库工具,它为在大规模数据集上进行复杂的查询提供了便利。Hive 的核心设计是让用户能够通过类似 SQL...

    Hadoop,Hive,Hbase等框架详解

    该文档保护了目前比较流行的大数据平台的原理过程梳理。Hadoop,Hive,Hbase,Spark,MapReduce,Storm

    (编译过的)hive-hbase-handler-1.2.1.jar

    hive和hbase的整合所需要的编译后的jar包。 注意:这里的hbase版本为:1.2.1 hive的版本为:1.2.1

    hive0.10.0和hbase0.94.4集成的 hive-hbase-handler-0.10.0.jar包

    hive0.10.0和hbase0.94.4集成的hive-hbase-handler.Jar包,经测试没有问题。

    hive 整合 hbase

    - **创建映射表**:在Hive中创建一个与HBase表相对应的外部表。例如: ```sql CREATE EXTERNAL TABLE h2h( rowkey string, f1 map,string&gt;, f2 map,string&gt; ) STORED BY 'org.apache.hadoop.hive.hbase....

Global site tag (gtag.js) - Google Analytics