参考https://blog.csdn.net/pengjunlee/article/details/82713047,讲解的较为详细
1、数据准备
40920 8.326976 0.953952 3 14488 7.153469 1.673904 2 26052 1.441871 0.805124 1 75136 13.147394 0.428964 1 38344 1.669788 0.134296 1 72993 10.141740 1.032955 1 35948 6.830792 1.213192 3 42666 13.276369 0.543880 3 67497 8.631577 0.749278 1 35483 12.273169 1.508053 3 50242 3.723498 0.831917 1 63275 8.385879 1.669485 1 5569 4.875435 0.728658 2 51052 4.680098 0.625224 1 77372 15.299570 0.331351 1 43673 1.889461 0.191283 1 61364 7.516754 1.269164 1 69673 14.239195 0.261333 1 15669 0.000000 1.250185 2 28488 10.528555 1.304844 3 6487 3.540265 0.822483 2 37708 2.991551 0.833920 1 22620 5.297865 0.638306 2 28782 6.593803 0.187108 3 19739 2.816760 1.686209 2 36788 12.458258 0.649617 3 5741 0.000000 1.656418 2 28567 9.968648 0.731232 3 6808 1.364838 0.640103 2 41611 0.230453 1.151996 1 36661 11.865402 0.882810 3 43605 0.120460 1.352013 1 15360 8.545204 1.340429 3 63796 5.856649 0.160006 1 10743 9.665618 0.778626 2 70808 9.778763 1.084103 1 72011 4.932976 0.632026 1 5914 2.216246 0.587095 2 14851 14.305636 0.632317 3 33553 12.591889 0.686581 3 44952 3.424649 1.004504 1 17934 0.000000 0.147573 2 27738 8.533823 0.205324 3 29290 9.829528 0.238620 3 42330 11.492186 0.263499 3 36429 3.570968 0.832254 1 39623 1.771228 0.207612 1 32404 3.513921 0.991854 1 27268 4.398172 0.975024 1 5477 4.276823 1.174874 2 14254 5.946014 1.614244 2 68613 13.798970 0.724375 1 41539 10.393591 1.663724 3 7917 3.007577 0.297302 2 21331 1.031938 0.486174 2 8338 4.751212 0.064693 2 5176 3.692269 1.655113 2 18983 10.448091 0.267652 3 68837 10.585786 0.329557 1 13438 1.604501 0.069064 2 48849 3.679497 0.961466 1 12285 3.795146 0.696694 2 7826 2.531885 1.659173 2 5565 9.733340 0.977746 2 10346 6.093067 1.413798 2 1823 7.712960 1.054927 2 9744 11.470364 0.760461 3 16857 2.886529 0.934416 2 39336 10.054373 1.138351 3 65230 9.972470 0.881876 1 2463 2.335785 1.366145 2 27353 11.375155 1.528626 3 16191 0.000000 0.605619 2 12258 4.126787 0.357501 2 42377 6.319522 1.058602 1 25607 8.680527 0.086955 3 77450 14.856391 1.129823 1 58732 2.454285 0.222380 1 46426 7.292202 0.548607 3 32688 8.745137 0.857348 3 64890 8.579001 0.683048 1 8554 2.507302 0.869177 2 28861 11.415476 1.505466 3 42050 4.838540 1.680892 1 32193 10.339507 0.583646 3 64895 6.573742 1.151433 1 2355 6.539397 0.462065 2 0 2.209159 0.723567 2 70406 11.196378 0.836326 1 57399 4.229595 0.128253 1 41732 9.505944 0.005273 3 11429 8.652725 1.348934 3 75270 17.101108 0.490712 1 5459 7.871839 0.717662 2 73520 8.262131 1.361646 1 40279 9.015635 1.658555 3 21540 9.215351 0.806762 3 17694 6.375007 0.033678 2 22329 2.262014 1.022169 1 46570 5.677110 0.709469 1 42403 11.293017 0.207976 3 33654 6.590043 1.353117 1 9171 4.711960 0.194167 2 28122 8.768099 1.108041 3 34095 11.502519 0.545097 3 1774 4.682812 0.578112 2 40131 12.446578 0.300754 3 13994 12.908384 1.657722 3 77064 12.601108 0.974527 1 11210 3.929456 0.025466 2 6122 9.751503 1.182050 3 15341 3.043767 0.888168 2 44373 4.391522 0.807100 1 28454 11.695276 0.679015 3 63771 7.879742 0.154263 1 9217 5.613163 0.933632 2 69076 9.140172 0.851300 1 24489 4.258644 0.206892 1 16871 6.799831 1.221171 2 39776 8.752758 0.484418 3 5901 1.123033 1.180352 2 40987 10.833248 1.585426 3 7479 3.051618 0.026781 2 38768 5.308409 0.030683 3 4933 1.841792 0.028099 2 32311 2.261978 1.605603 1 26501 11.573696 1.061347 3 37433 8.038764 1.083910 3 23503 10.734007 0.103715 3 68607 9.661909 0.350772 1 27742 9.005850 0.548737 3 11303 0.000000 0.539131 2 0 5.757140 1.062373 2 32729 9.164656 1.624565 3 24619 1.318340 1.436243 1 42414 14.075597 0.695934 3 20210 10.107550 1.308398 3 33225 7.960293 1.219760 3 54483 6.317292 0.018209 1 18475 12.664194 0.595653 3 33926 2.906644 0.581657 1 43865 2.388241 0.913938 1 26547 6.024471 0.486215 3 44404 7.226764 1.255329 3 16674 4.183997 1.275290 2 8123 11.850211 1.096981 3 42747 11.661797 1.167935 3 56054 3.574967 0.494666 1 10933 0.000000 0.107475 2 18121 7.937657 0.904799 3 11272 3.365027 1.014085 2 16297 0.000000 0.367491 2 28168 13.860672 1.293270 3 40963 10.306714 1.211594 3 31685 7.228002 0.670670 3 55164 4.508740 1.036192 1 17595 0.366328 0.163652 2 1862 3.299444 0.575152 2 57087 0.573287 0.607915 1 63082 9.183738 0.012280 1 51213 7.842646 1.060636 3 6487 4.750964 0.558240 2 4805 11.438702 1.556334 3 30302 8.243063 1.122768 3 68680 7.949017 0.271865 1 17591 7.875477 0.227085 2 74391 9.569087 0.364856 1 37217 7.750103 0.869094 3 42814 0.000000 1.515293 1 14738 3.396030 0.633977 2 19896 11.916091 0.025294 3 14673 0.460758 0.689586 2 32011 13.087566 0.476002 3 58736 4.589016 1.672600 1 54744 8.397217 1.534103 1 29482 5.562772 1.689388 1 27698 10.905159 0.619091 3 11443 1.311441 1.169887 2 56117 10.647170 0.980141 3 39514 0.000000 0.481918 1 26627 8.503025 0.830861 3 16525 0.436880 1.395314 2 24368 6.127867 1.102179 1 22160 12.112492 0.359680 3 6030 1.264968 1.141582 2 6468 6.067568 1.327047 2 22945 8.010964 1.681648 3 18520 3.791084 0.304072 2 34914 11.773195 1.262621 3 6121 8.339588 1.443357 2 38063 2.563092 1.464013 1 23410 5.954216 0.953782 1 35073 9.288374 0.767318 3 52914 3.976796 1.043109 1 16801 8.585227 1.455708 3 9533 1.271946 0.796506 2 16721 0.000000 0.242778 2 5832 0.000000 0.089749 2 44591 11.521298 0.300860 3 10143 1.139447 0.415373 2 21609 5.699090 1.391892 2 23817 2.449378 1.322560 1 15640 0.000000 1.228380 2 8847 3.168365 0.053993 2 50939 10.428610 1.126257 3 28521 2.943070 1.446816 1 32901 10.441348 0.975283 3 42850 12.478764 1.628726 3 13499 5.856902 0.363883 2 40345 2.476420 0.096075 1 43547 1.826637 0.811457 1 70758 4.324451 0.328235 1 19780 1.376085 1.178359 2 44484 5.342462 0.394527 1 54462 11.835521 0.693301 3 20085 12.423687 1.424264 3 42291 12.161273 0.071131 3 47550 8.148360 1.649194 3 11938 1.531067 1.549756 2 40699 3.200912 0.309679 1 70908 8.862691 0.530506 1 73989 6.370551 0.369350 1 11872 2.468841 0.145060 2 48463 11.054212 0.141508 3 15987 2.037080 0.715243 2 70036 13.364030 0.549972 1 32967 10.249135 0.192735 3 63249 10.464252 1.669767 1 42795 9.424574 0.013725 3 14459 4.458902 0.268444 2 19973 0.000000 0.575976 2 5494 9.686082 1.029808 3 67902 13.649402 1.052618 1 25621 13.181148 0.273014 3 27545 3.877472 0.401600 1 58656 1.413952 0.451380 1 7327 4.248986 1.430249 2 64555 8.779183 0.845947 1 8998 4.156252 0.097109 2 11752 5.580018 0.158401 2 76319 15.040440 1.366898 1 27665 12.793870 1.307323 3 67417 3.254877 0.669546 1 21808 10.725607 0.588588 3 15326 8.256473 0.765891 2 20057 8.033892 1.618562 3 79341 10.702532 0.204792 1 15636 5.062996 1.132555 2 35602 10.772286 0.668721 3 28544 1.892354 0.837028 1 57663 1.019966 0.372320 1 78727 15.546043 0.729742 1 68255 11.638205 0.409125 1 14964 3.427886 0.975616 2 21835 11.246174 1.475586 3 7487 0.000000 0.645045 2 8700 0.000000 1.424017 2 26226 8.242553 0.279069 3 65899 8.700060 0.101807 1 6543 0.812344 0.260334 2 46556 2.448235 1.176829 1 71038 13.230078 0.616147 1 47657 0.236133 0.340840 1 19600 11.155826 0.335131 3 37422 11.029636 0.505769 3 1363 2.901181 1.646633 2 26535 3.924594 1.143120 1 47707 2.524806 1.292848 1 38055 3.527474 1.449158 1 6286 3.384281 0.889268 2 10747 0.000000 1.107592 2 44883 11.898890 0.406441 3 56823 3.529892 1.375844 1 68086 11.442677 0.696919 1 70242 10.308145 0.422722 1 11409 8.540529 0.727373 2 67671 7.156949 1.691682 1 61238 0.720675 0.847574 1 17774 0.229405 1.038603 2 53376 3.399331 0.077501 1 30930 6.157239 0.580133 1 28987 1.239698 0.719989 1 13655 6.036854 0.016548 2 7227 5.258665 0.933722 2 40409 12.393001 1.571281 3 13605 9.627613 0.935842 2 26400 11.130453 0.597610 3 13491 8.842595 0.349768 3 30232 10.690010 1.456595 3 43253 5.714718 1.674780 3 55536 3.052505 1.335804 1 8807 0.000000 0.059025 2 25783 9.945307 1.287952 3 22812 2.719723 1.142148 1 77826 11.154055 1.608486 1 38172 2.687918 0.660836 1 31676 10.037847 0.962245 3 74038 12.404762 1.112080 1 44738 10.237305 0.633422 3 17410 4.745392 0.662520 2 5688 4.639461 1.569431 2 36642 3.149310 0.639669 1 29956 13.406875 1.639194 3 60350 6.068668 0.881241 1 23758 9.477022 0.899002 3 25780 3.897620 0.560201 2 11342 5.463615 1.203677 2 36109 3.369267 1.575043 1 14292 5.234562 0.825954 2 11160 0.000000 0.722170 2 23762 12.979069 0.504068 3 39567 5.376564 0.557476 1 25647 13.527910 1.586732 3 14814 2.196889 0.784587 2 73590 10.691748 0.007509 1 35187 1.659242 0.447066 1 49459 8.369667 0.656697 3 31657 13.157197 0.143248 3 6259 8.199667 0.908508 2 33101 4.441669 0.439381 3 27107 9.846492 0.644523 3 17824 0.019540 0.977949 2 43536 8.253774 0.748700 3 67705 6.038620 1.509646 1 35283 6.091587 1.694641 3 71308 8.986820 1.225165 1 31054 11.508473 1.624296 3 52387 8.807734 0.713922 3 40328 0.000000 0.816676 1 34844 8.889202 1.665414 3 11607 3.178117 0.542752 2 64306 7.013795 0.139909 1 32721 9.605014 0.065254 3 33170 1.230540 1.331674 1 37192 10.412811 0.890803 3 13089 0.000000 0.567161 2 66491 9.699991 0.122011 1 15941 0.000000 0.061191 2 4272 4.455293 0.272135 2 48812 3.020977 1.502803 1 28818 8.099278 0.216317 3 35394 1.157764 1.603217 1 71791 10.105396 0.121067 1 40668 11.230148 0.408603 3 39580 9.070058 0.011379 3 11786 0.566460 0.478837 2 19251 0.000000 0.487300 2 56594 8.956369 1.193484 3 54495 1.523057 0.620528 1 11844 2.749006 0.169855 2 45465 9.235393 0.188350 3 31033 10.555573 0.403927 3 16633 6.956372 1.519308 2 13887 0.636281 1.273984 2 52603 3.574737 0.075163 1 72000 9.032486 1.461809 1 68497 5.958993 0.023012 1 35135 2.435300 1.211744 1 26397 10.539731 1.638248 3 7313 7.646702 0.056513 2 91273 20.919349 0.644571 1 24743 1.424726 0.838447 1 31690 6.748663 0.890223 3 15432 2.289167 0.114881 2 58394 5.548377 0.402238 1 33962 6.057227 0.432666 1 31442 10.828595 0.559955 3 31044 11.318160 0.271094 3 29938 13.265311 0.633903 3 9875 0.000000 1.496715 2 51542 6.517133 0.402519 3 11878 4.934374 1.520028 2 69241 10.151738 0.896433 1 37776 2.425781 1.559467 1 68997 9.778962 1.195498 1 67416 12.219950 0.657677 1 59225 7.394151 0.954434 1 29138 8.518535 0.742546 3 5962 2.798700 0.662632 2 10847 0.637930 0.617373 2 70527 10.750490 0.097415 1 9610 0.625382 0.140969 2 64734 10.027968 0.282787 1 25941 9.817347 0.364197 3 2763 0.646828 1.266069 2 55601 3.347111 0.914294 1 31128 11.816892 0.193798 3 5181 0.000000 1.480198 2 69982 10.945666 0.993219 1 52440 10.244706 0.280539 3 57350 2.579801 1.149172 1 57869 2.630410 0.098869 1 56557 11.746200 1.695517 3 42342 8.104232 1.326277 3 15560 12.409743 0.790295 3 34826 12.167844 1.328086 3 8569 3.198408 0.299287 2 77623 16.055513 0.541052 1 78184 7.138659 0.158481 1 7036 4.831041 0.761419 2 69616 10.082890 1.373611 1 21546 10.066867 0.788470 3 36715 8.129538 0.329913 3 20522 3.012463 1.138108 2 42349 3.720391 0.845974 1 9037 0.773493 1.148256 2 26728 10.962941 1.037324 3 587 0.177621 0.162614 2 48915 3.085853 0.967899 1 9824 8.426781 0.202558 2 4135 1.825927 1.128347 2 9666 2.185155 1.010173 2 59333 7.184595 1.261338 1 36198 0.000000 0.116525 1 34909 8.901752 1.033527 3 47516 2.451497 1.358795 1 55807 3.213631 0.432044 1 14036 3.974739 0.723929 2 42856 9.601306 0.619232 3 64007 8.363897 0.445341 1 59428 6.381484 1.365019 1 13730 0.000000 1.403914 2 41740 9.609836 1.438105 3 63546 9.904741 0.985862 1 30417 7.185807 1.489102 3 69636 5.466703 1.216571 1 64660 0.000000 0.915898 1 14883 4.575443 0.535671 2 7965 3.277076 1.010868 2 68620 10.246623 1.239634 1 8738 2.341735 1.060235 2 7544 3.201046 0.498843 2 6377 6.066013 0.120927 2 36842 8.829379 0.895657 3 81046 15.833048 1.568245 1 67736 13.516711 1.220153 1 32492 0.664284 1.116755 1 39299 6.325139 0.605109 3 77289 8.677499 0.344373 1 33835 8.188005 0.964896 3 71890 9.414263 0.384030 1 32054 9.196547 1.138253 3 38579 10.202968 0.452363 3 55984 2.119439 1.481661 1 72694 13.635078 0.858314 1 42299 0.083443 0.701669 1 26635 9.149096 1.051446 3 8579 1.933803 1.374388 2 37302 14.115544 0.676198 3 22878 8.933736 0.943352 3 4364 2.661254 0.946117 2 4985 0.988432 1.305027 2 37068 2.063741 1.125946 1 41137 2.220590 0.690754 1 67759 6.424849 0.806641 1 11831 1.156153 1.613674 2 34502 3.032720 0.601847 1 4088 3.076828 0.952089 2 15199 0.000000 0.318105 2 17309 7.750480 0.554015 3 42816 10.958135 1.482500 3 43751 10.222018 0.488678 3 58335 2.367988 0.435741 1 75039 7.686054 1.381455 1 42878 11.464879 1.481589 3 42770 11.075735 0.089726 3 8848 3.543989 0.345853 2 31340 8.123889 1.282880 3 41413 4.331769 0.754467 3 12731 0.120865 1.211961 2 22447 6.116109 0.701523 3 33564 7.474534 0.505790 3 48907 8.819454 0.649292 3 8762 6.802144 0.615284 2 46696 12.666325 0.931960 3 36851 8.636180 0.399333 3 67639 11.730991 1.289833 1 171 8.132449 0.039062 2 26674 10.296589 1.496144 3 8739 7.583906 1.005764 2 66668 9.777806 0.496377 1 68732 8.833546 0.513876 1 69995 4.907899 1.518036 1 82008 8.362736 1.285939 1 25054 9.084726 1.606312 3 33085 14.164141 0.560970 3 41379 9.080683 0.989920 3 39417 6.522767 0.038548 3 12556 3.690342 0.462281 2 39432 3.563706 0.242019 1 38010 1.065870 1.141569 1 69306 6.683796 1.456317 1 38000 1.712874 0.243945 1 46321 13.109929 1.280111 3 66293 11.327910 0.780977 1 22730 4.545711 1.233254 1 5952 3.367889 0.468104 2 72308 8.326224 0.567347 1 60338 8.978339 1.442034 1 13301 5.655826 1.582159 2 27884 8.855312 0.570684 3 11188 6.649568 0.544233 2 56796 3.966325 0.850410 1 8571 1.924045 1.664782 2 4914 6.004812 0.280369 2 10784 0.000000 0.375849 2 39296 9.923018 0.092192 3 13113 2.389084 0.119284 2 70204 13.663189 0.133251 1 46813 11.434976 0.321216 3 11697 0.358270 1.292858 2 44183 9.598873 0.223524 3 2225 6.375275 0.608040 2 29066 11.580532 0.458401 3 4245 5.319324 1.598070 2 34379 4.324031 1.603481 1 44441 2.358370 1.273204 1 2022 0.000000 1.182708 2 26866 12.824376 0.890411 3 57070 1.587247 1.456982 1 32932 8.510324 1.520683 3 51967 10.428884 1.187734 3 44432 8.346618 0.042318 3 67066 7.541444 0.809226 1 17262 2.540946 1.583286 2 79728 9.473047 0.692513 1 14259 0.352284 0.474080 2 6122 0.000000 0.589826 2 76879 12.405171 0.567201 1 11426 4.126775 0.871452 2 2493 0.034087 0.335848 2 19910 1.177634 0.075106 2 10939 0.000000 0.479996 2 17716 0.994909 0.611135 2 31390 11.053664 1.180117 3 20375 0.000000 1.679729 2 26309 2.495011 1.459589 1 33484 11.516831 0.001156 3 45944 9.213215 0.797743 3 4249 5.332865 0.109288 2 6089 0.000000 1.689771 2 7513 0.000000 1.126053 2 27862 12.640062 1.690903 3 39038 2.693142 1.317518 1 19218 3.328969 0.268271 2 62911 7.193166 1.117456 1 77758 6.615512 1.521012 1 27940 8.000567 0.835341 3 2194 4.017541 0.512104 2 37072 13.245859 0.927465 3 15585 5.970616 0.813624 2 25577 11.668719 0.886902 3 8777 4.283237 1.272728 2 29016 10.742963 0.971401 3 21910 12.326672 1.592608 3 12916 0.000000 0.344622 2 10976 0.000000 0.922846 2 79065 10.602095 0.573686 1 36759 10.861859 1.155054 3 50011 1.229094 1.638690 1 1155 0.410392 1.313401 2 71600 14.552711 0.616162 1 30817 14.178043 0.616313 3 54559 14.136260 0.362388 1 29764 0.093534 1.207194 1 69100 10.929021 0.403110 1 47324 11.432919 0.825959 3 73199 9.134527 0.586846 1 44461 5.071432 1.421420 1 45617 11.460254 1.541749 3 28221 11.620039 1.103553 3 7091 4.022079 0.207307 2 6110 3.057842 1.631262 2 79016 7.782169 0.404385 1 18289 7.981741 0.929789 3 43679 4.601363 0.268326 1 22075 2.595564 1.115375 1 23535 10.049077 0.391045 3 25301 3.265444 1.572970 2 32256 11.780282 1.511014 3 36951 3.075975 0.286284 1 31290 1.795307 0.194343 1 38953 11.106979 0.202415 3 35257 5.994413 0.800021 1 25847 9.706062 1.012182 3 32680 10.582992 0.836025 3 62018 7.038266 1.458979 1 9074 0.023771 0.015314 2 33004 12.823982 0.676371 3 44588 3.617770 0.493483 1 32565 8.346684 0.253317 3 38563 6.104317 0.099207 1 75668 16.207776 0.584973 1 9069 6.401969 1.691873 2 53395 2.298696 0.559757 1 28631 7.661515 0.055981 3 71036 6.353608 1.645301 1 71142 10.442780 0.335870 1 37653 3.834509 1.346121 1 76839 10.998587 0.584555 1 9916 2.695935 1.512111 2 38889 3.356646 0.324230 1 39075 14.677836 0.793183 3 48071 1.551934 0.130902 1 7275 2.464739 0.223502 2 41804 1.533216 1.007481 1 35665 12.473921 0.162910 3 67956 6.491596 0.032576 1 41892 10.506276 1.510747 3 38844 4.380388 0.748506 1 74197 13.670988 1.687944 1 14201 8.317599 0.390409 2 3908 0.000000 0.556245 2 2459 0.000000 0.290218 2 32027 10.095799 1.188148 3 12870 0.860695 1.482632 2 9880 1.557564 0.711278 2 72784 10.072779 0.756030 1 17521 0.000000 0.431468 2 50283 7.140817 0.883813 3 33536 11.384548 1.438307 3 9452 3.214568 1.083536 2 37457 11.720655 0.301636 3 17724 6.374475 1.475925 3 43869 5.749684 0.198875 3 264 3.871808 0.552602 2 25736 8.336309 0.636238 3 39584 9.710442 1.503735 3 31246 1.532611 1.433898 1 49567 9.785785 0.984614 3 7052 2.633627 1.097866 2 35493 9.238935 0.494701 3 10986 1.205656 1.398803 2 49508 3.124909 1.670121 1 5734 7.935489 1.585044 2 65479 12.746636 1.560352 1 77268 10.732563 0.545321 1 28490 3.977403 0.766103 1 13546 4.194426 0.450663 2 37166 9.610286 0.142912 3 16381 4.797555 1.260455 2 10848 1.615279 0.093002 2 35405 4.614771 1.027105 1 15917 0.000000 1.369726 2 6131 0.608457 0.512220 2 67432 6.558239 0.667579 1 30354 12.315116 0.197068 3 69696 7.014973 1.494616 1 33481 8.822304 1.194177 3 43075 10.086796 0.570455 3 38343 7.241614 1.661627 3 14318 4.602395 1.511768 2 5367 7.434921 0.079792 2 37894 10.467570 1.595418 3 36172 9.948127 0.003663 3 40123 2.478529 1.568987 1 10976 5.938545 0.878540 2 12705 0.000000 0.948004 2 12495 5.559181 1.357926 2 35681 9.776654 0.535966 3 46202 3.092056 0.490906 1 11505 0.000000 1.623311 2 22834 4.459495 0.538867 1 49901 8.334306 1.646600 3 71932 11.226654 0.384686 1 13279 3.904737 1.597294 2 49112 7.038205 1.211329 3 77129 9.836120 1.054340 1 37447 1.990976 0.378081 1 62397 9.005302 0.485385 1 0 1.772510 1.039873 2 15476 0.458674 0.819560 2 40625 10.003919 0.231658 3 36706 0.520807 1.476008 1 28580 10.678214 1.431837 3 25862 4.425992 1.363842 1 63488 12.035355 0.831222 1 33944 10.606732 1.253858 3 30099 1.568653 0.684264 1 13725 2.545434 0.024271 2 36768 10.264062 0.982593 3 64656 9.866276 0.685218 1 14927 0.142704 0.057455 2 43231 9.853270 1.521432 3 66087 6.596604 1.653574 1 19806 2.602287 1.321481 2 41081 10.411776 0.664168 3 10277 7.083449 0.622589 2 7014 2.080068 1.254441 2 17275 0.522844 1.622458 2 31600 10.362000 1.544827 3 59956 3.412967 1.035410 1 42181 6.796548 1.112153 3 51743 4.092035 0.075804 1 5194 2.763811 1.564325 2 30832 12.547439 1.402443 3 7976 5.708052 1.596152 2 14602 4.558025 0.375806 2 41571 11.642307 0.438553 3 55028 3.222443 0.121399 1 5837 4.736156 0.029871 2 39808 10.839526 0.836323 3 20944 4.194791 0.235483 2 22146 14.936259 0.888582 3 42169 3.310699 1.521855 1 7010 2.971931 0.034321 2 3807 9.261667 0.537807 2 29241 7.791833 1.111416 3 52696 1.480470 1.028750 1 42545 3.677287 0.244167 1 24437 2.202967 1.370399 1 16037 5.796735 0.935893 2 8493 3.063333 0.144089 2 68080 11.233094 0.492487 1 59016 1.965570 0.005697 1 11810 8.616719 0.137419 2 68630 6.609989 1.083505 1 7629 1.712639 1.086297 2 71992 10.117445 1.299319 1 13398 0.000000 1.104178 2 26241 9.824777 1.346821 3 11160 1.653089 0.980949 2 76701 18.178822 1.473671 1 32174 6.781126 0.885340 3 45043 8.206750 1.549223 3 42173 10.081853 1.376745 3 69801 6.288742 0.112799 1 41737 3.695937 1.543589 1 46979 6.726151 1.069380 3 79267 12.969999 1.568223 1 4615 2.661390 1.531933 2 32907 7.072764 1.117386 3 37444 9.123366 1.318988 3 569 3.743946 1.039546 2 8723 2.341300 0.219361 2 6024 0.541913 0.592348 2 52252 2.310828 1.436753 1 8358 6.226597 1.427316 2 26166 7.277876 0.489252 3 18471 0.000000 0.389459 2 3386 7.218221 1.098828 2 41544 8.777129 1.111464 3 10480 2.813428 0.819419 2 5894 2.268766 1.412130 2 7273 6.283627 0.571292 2 22272 7.520081 1.626868 3 31369 11.739225 0.027138 3 10708 3.746883 0.877350 2 69364 12.089835 0.521631 1 37760 12.310404 0.259339 3 13004 0.000000 0.671355 2 37885 2.728800 0.331502 1 52555 10.814342 0.607652 3 38997 12.170268 0.844205 3 69698 6.698371 0.240084 1 11783 3.632672 1.643479 2 47636 10.059991 0.892361 3 15744 1.887674 0.756162 2 69058 8.229125 0.195886 1 33057 7.817082 0.476102 3 28681 12.277230 0.076805 3 34042 10.055337 1.115778 3 29928 3.596002 1.485952 1 9734 2.755530 1.420655 2 7344 7.780991 0.513048 2 7387 0.093705 0.391834 2 33957 8.481567 0.520078 3 9936 3.865584 0.110062 2 36094 9.683709 0.779984 3 39835 10.617255 1.359970 3 64486 7.203216 1.624762 1 0 7.601414 1.215605 2 39539 1.386107 1.417070 1 66972 9.129253 0.594089 1 15029 1.363447 0.620841 2 44909 3.181399 0.359329 1 38183 13.365414 0.217011 3 37372 4.207717 1.289767 1 0 4.088395 0.870075 2 17786 3.327371 1.142505 2 39055 1.303323 1.235650 1 37045 7.999279 1.581763 3 6435 2.217488 0.864536 2 72265 7.751808 0.192451 1 28152 14.149305 1.591532 3 25931 8.765721 0.152808 3 7538 3.408996 0.184896 2 1315 1.251021 0.112340 2 12292 6.160619 1.537165 2 49248 1.034538 1.585162 1 9025 0.000000 1.034635 2 13438 2.355051 0.542603 2 69683 6.614543 0.153771 1 25374 10.245062 1.450903 3 55264 3.467074 1.231019 1 38324 7.487678 1.572293 3 69643 4.624115 1.185192 1 44058 8.995957 1.436479 3 41316 11.564476 0.007195 3 29119 3.440948 0.078331 1 51656 1.673603 0.732746 1 3030 4.719341 0.699755 2 35695 10.304798 1.576488 3 1537 2.086915 1.199312 2 9083 6.338220 1.131305 2 47744 8.254926 0.710694 3 71372 16.067108 0.974142 1 37980 1.723201 0.310488 1 42385 3.785045 0.876904 1 22687 2.557561 0.123738 1 39512 9.852220 1.095171 3 11885 3.679147 1.557205 2 4944 9.789681 0.852971 2 73230 14.958998 0.526707 1 17585 11.182148 1.288459 3 68737 7.528533 1.657487 1 13818 5.253802 1.378603 2 31662 13.946752 1.426657 3 86686 15.557263 1.430029 1 43214 12.483550 0.688513 3 24091 2.317302 1.411137 1 52544 10.069724 0.766119 3 61861 5.792231 1.615483 1 47903 4.138435 0.475994 1 37190 12.929517 0.304378 3 6013 9.378238 0.307392 2 27223 8.361362 1.643204 3 69027 7.939406 1.325042 1 78642 10.735384 0.705788 1 30254 11.592723 0.286188 3 21704 10.098356 0.704748 3 34985 9.299025 0.545337 3 31316 11.158297 0.218067 3 76368 16.143900 0.558388 1 27953 10.971700 1.221787 3 152 0.000000 0.681478 2 9146 3.178961 1.292692 2 75346 17.625350 0.339926 1 26376 1.995833 0.267826 1 35255 10.640467 0.416181 3 19198 9.628339 0.985462 3 12518 4.662664 0.495403 2 25453 5.754047 1.382742 2 12530 0.000000 0.037146 2 62230 9.334332 0.198118 1 9517 3.846162 0.619968 2 71161 10.685084 0.678179 1 1593 4.752134 0.359205 2 33794 0.697630 0.966786 1 39710 10.365836 0.505898 3 16941 0.461478 0.352865 2 69209 11.339537 1.068740 1 4446 5.420280 0.127310 2 9347 3.469955 1.619947 2 55635 8.517067 0.994858 3 65889 8.306512 0.413690 1 10753 2.628690 0.444320 2 7055 0.000000 0.802985 2 7905 0.000000 1.170397 2 53447 7.298767 1.582346 3 9194 7.331319 1.277988 2 61914 9.392269 0.151617 1 15630 5.541201 1.180596 2 79194 15.149460 0.537540 1 12268 5.515189 0.250562 2 33682 7.728898 0.920494 3 26080 11.318785 1.510979 3 19119 3.574709 1.531514 2 30902 7.350965 0.026332 3 63039 7.122363 1.630177 1 51136 1.828412 1.013702 1 35262 10.117989 1.156862 3 42776 11.309897 0.086291 3 64191 8.342034 1.388569 1 15436 0.241714 0.715577 2 14402 10.482619 1.694972 2 6341 9.289510 1.428879 2 14113 4.269419 0.134181 2 6390 0.000000 0.189456 2 8794 0.817119 0.143668 2 43432 1.508394 0.652651 1 38334 9.359918 0.052262 3 34068 10.052333 0.550423 3 30819 11.111660 0.989159 3 22239 11.265971 0.724054 3 28725 10.383830 0.254836 3 57071 3.878569 1.377983 1 72420 13.679237 0.025346 1 28294 10.526846 0.781569 3 9896 0.000000 0.924198 2 65821 4.106727 1.085669 1 7645 8.118856 1.470686 2 71289 7.796874 0.052336 1 5128 2.789669 1.093070 2 13711 6.226962 0.287251 2 22240 10.169548 1.660104 3 15092 0.000000 1.370549 2 5017 7.513353 0.137348 2 10141 8.240793 0.099735 2 35570 14.612797 1.247390 3 46893 3.562976 0.445386 1 8178 3.230482 1.331698 2 55783 3.612548 1.551911 1 1148 0.000000 0.332365 2 10062 3.931299 0.487577 2 74124 14.752342 1.155160 1 66603 10.261887 1.628085 1 11893 2.787266 1.570402 2 50908 15.112319 1.324132 3 39891 5.184553 0.223382 3 65915 3.868359 0.128078 1 65678 3.507965 0.028904 1 62996 11.019254 0.427554 1 36851 3.812387 0.655245 1 36669 11.056784 0.378725 3 38876 8.826880 1.002328 3 26878 11.173861 1.478244 3 46246 11.506465 0.421993 3 12761 7.798138 0.147917 3 35282 10.155081 1.370039 3 68306 10.645275 0.693453 1 31262 9.663200 1.521541 3 34754 10.790404 1.312679 3 13408 2.810534 0.219962 2 30365 9.825999 1.388500 3 10709 1.421316 0.677603 2 24332 11.123219 0.809107 3 45517 13.402206 0.661524 3 6178 1.212255 0.836807 2 10639 1.568446 1.297469 2 29613 3.343473 1.312266 1 22392 5.400155 0.193494 1 51126 3.818754 0.590905 1 53644 7.973845 0.307364 3 51417 9.078824 0.734876 3 24859 0.153467 0.766619 1 61732 8.325167 0.028479 1 71128 7.092089 1.216733 1 27276 5.192485 1.094409 3 30453 10.340791 1.087721 3 18670 2.077169 1.019775 2 70600 10.151966 0.993105 1 12683 0.046826 0.809614 2 81597 11.221874 1.395015 1 69959 14.497963 1.019254 1 8124 3.554508 0.533462 2 18867 3.522673 0.086725 2 80886 14.531655 0.380172 1 55895 3.027528 0.885457 1 31587 1.845967 0.488985 1 10591 10.226164 0.804403 3 70096 10.965926 1.212328 1 53151 2.129921 1.477378 1 11992 0.000000 1.606849 2 33114 9.489005 0.827814 3 7413 0.000000 1.020797 2 10583 0.000000 1.270167 2 58668 6.556676 0.055183 1 35018 9.959588 0.060020 3 70843 7.436056 1.479856 1 14011 0.404888 0.459517 2 35015 9.952942 1.650279 3 70839 15.600252 0.021935 1 3024 2.723846 0.387455 2 5526 0.513866 1.323448 2 5113 0.000000 0.861859 2 20851 7.280602 1.438470 2 40999 9.161978 1.110180 3 15823 0.991725 0.730979 2 35432 7.398380 0.684218 3 53711 12.149747 1.389088 3 64371 9.149678 0.874905 1 9289 9.666576 1.370330 2 60613 3.620110 0.287767 1 18338 5.238800 1.253646 2 22845 14.715782 1.503758 3 74676 14.445740 1.211160 1 34143 13.609528 0.364240 3 14153 3.141585 0.424280 2 9327 0.000000 0.120947 2 18991 0.454750 1.033280 2 9193 0.510310 0.016395 2 2285 3.864171 0.616349 2 9493 6.724021 0.563044 2 2371 4.289375 0.012563 2 13963 0.000000 1.437030 2 2299 3.733617 0.698269 2 5262 2.002589 1.380184 2 4659 2.502627 0.184223 2 17582 6.382129 0.876581 2 27750 8.546741 0.128706 3 9868 2.694977 0.432818 2 18333 3.951256 0.333300 2 3780 9.856183 0.329181 2 18190 2.068962 0.429927 2 11145 3.410627 0.631838 2 68846 9.974715 0.669787 1 26575 10.650102 0.866627 3 48111 9.134528 0.728045 3 43757 7.882601 1.332446 3
2、python实现
import numpy as np import pandas as pd # 读取数据 dataarr=pd.read_csv('../../datingTestSet.txt') dataset=[] for row in dataarr.itertuples(): if row: line=row._1 line=line.strip() dataset.append(np.array(line.split('\t'))) dataset=np.array(dataset) dataset = dataset.astype(float) X = dataset[:, 0: 3] y = dataset[:, -1] # testt=[[43605 , 0.120460 , 1.352013]] # 切分数据集为训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # 归一化数据 from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # 训练模型 from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2) classifier.fit(X_train, y_train) # 测试模型 y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report cm = confusion_matrix(y_test, y_pred) print(cm) print( y_test, "--",y_pred) print(classification_report(y_test, y_pred))
相关推荐
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是...
智能优化算法优化最邻近分类算法KNN分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化KNN 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化KNN 4.4.3 灰狼算法GWO/狼群算法WPA优化KNN 4.4.4 鲸鱼算法WOA...
智能优化算法优化最邻近分类算法KNN分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化KNN 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化KNN 4.4.3 灰狼算法GWO/狼群算法WPA优化KNN 4.4.4 鲸鱼算法WOA...
传统kNN算法在进行分类时,通常只考虑距离最近的k个样本,并根据这些样本的类别来进行预测。而在模糊kNN算法中,不仅考虑了样本间的距离,还利用了模糊集合理论中的隶属度概念,为每个样本分配一个权重,进而对最终...
KNN(K-最近邻)算法是机器学习领域中一种基础且重要的分类和回归方法,尤其在模式识别和数据挖掘中被广泛应用。本项目通过Java语言实现了一个简单的KNN算法,帮助初学者理解该算法的基本原理和编程实现。 1. **KNN...
Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:ga_2d_box_packing_test_task.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 ...
4.1 最邻近规则分类(K-Nearest Neighbor)KNN算法
KNN(K-Nearest Neighbors)...总的来说,KNN邻近算法是机器学习中的基础工具,虽然简单但效果良好,尤其适用于小规模数据集或作为其他复杂算法的基准。通过理解其原理和实现细节,我们可以更好地应用和改进这个算法。
本资源是关于人工智能领域K近邻算法(KNN)的实例演示-鸢尾花识别-使用excel分辨鸢尾花种类,内容详细解读KNN如何解决分类问题,为大众提供一种解决问题的全新方法。内含各大公式作用指导,帮助大家进一步理解何为KNN...
在机器学习领域,K最邻近算法(K-Nearest Neighbors, KNN)是一种简单而有效的非参数方法,常用于分类和回归任务。本文将详细介绍C++如何实现KNN算法,并结合KD树(K-Dimensional Tree)进行优化,以提高在大数据集...
最邻近算法(K-Nearest Neighbors, KNN)是一种经典的监督学习方法,常用于分类和回归问题。在字符识别领域,KNN算法表现出了高效且实用的特性。本篇将深入探讨KNN算法的基本原理、实现步骤以及在字符识别中的应用。...
KNN,全称为K-Nearest Neighbors,是一种...总结,KNN邻近算法是一种直观且实用的机器学习方法,尽管存在计算复杂性等问题,但通过适当优化和选择合适的工具(如MATLAB和Python),仍能在许多实际场景下发挥重要作用。
该算法的核心思想是,如果一个样本在特征空间中的 k 个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 KNN 算法的优点是: 1. 简单易懂,易于实现 2. 可以处理高维数据 3...
在这个"KNN植物分类算法实例"中,压缩包中的"算法源代码工程"可能包含实现KNN算法的Python代码,例如使用sklearn库。这些代码通常会包括数据加载、预处理、模型训练、预测以及性能评估等部分。通过阅读和理解代码,...
最邻近规则分类(K-Nearest Neighbor,简称KNN)是机器学习领域中最基础的算法之一,尤其在监督学习中扮演着重要角色。KNN算法应用广泛,尤其是在分类问题中,例如图像识别、文本分类等。这个压缩包文件可能包含了...
**K最邻近法(K-Nearest Neighbors, KNN)**是一种经典的监督学习算法,主要用于分类问题。它的核心思想是:一个未知类别的样本点可以通过查找其在训练集中最近的K个已知类别样本点,根据这些点的类别进行投票来决定...
KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征...
最邻近算法(K-Nearest Neighbors,简称KNN)是一种基础且广泛应用的监督学习方法,主要用于分类和回归问题。在KNN算法中,我们假设一个实例将被分配到与其最近的邻居最多的类别,这一原则被称为“局部一致”或...