`
sunbin
  • 浏览: 354521 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

KNN最邻近分类算法

 
阅读更多

参考https://blog.csdn.net/pengjunlee/article/details/82713047,讲解的较为详细

 

1、数据准备

40920	8.326976	0.953952	3

14488	7.153469	1.673904	2

26052	1.441871	0.805124	1

75136	13.147394	0.428964	1

38344	1.669788	0.134296	1

72993	10.141740	1.032955	1

35948	6.830792	1.213192	3

42666	13.276369	0.543880	3

67497	8.631577	0.749278	1

35483	12.273169	1.508053	3

50242	3.723498	0.831917	1

63275	8.385879	1.669485	1

5569	4.875435	0.728658	2

51052	4.680098	0.625224	1

77372	15.299570	0.331351	1

43673	1.889461	0.191283	1

61364	7.516754	1.269164	1

69673	14.239195	0.261333	1

15669	0.000000	1.250185	2

28488	10.528555	1.304844	3

6487	3.540265	0.822483	2

37708	2.991551	0.833920	1

22620	5.297865	0.638306	2

28782	6.593803	0.187108	3

19739	2.816760	1.686209	2

36788	12.458258	0.649617	3

5741	0.000000	1.656418	2

28567	9.968648	0.731232	3

6808	1.364838	0.640103	2

41611	0.230453	1.151996	1

36661	11.865402	0.882810	3

43605	0.120460	1.352013	1

15360	8.545204	1.340429	3

63796	5.856649	0.160006	1

10743	9.665618	0.778626	2

70808	9.778763	1.084103	1

72011	4.932976	0.632026	1

5914	2.216246	0.587095	2

14851	14.305636	0.632317	3

33553	12.591889	0.686581	3

44952	3.424649	1.004504	1

17934	0.000000	0.147573	2

27738	8.533823	0.205324	3

29290	9.829528	0.238620	3

42330	11.492186	0.263499	3

36429	3.570968	0.832254	1

39623	1.771228	0.207612	1

32404	3.513921	0.991854	1

27268	4.398172	0.975024	1

5477	4.276823	1.174874	2

14254	5.946014	1.614244	2

68613	13.798970	0.724375	1

41539	10.393591	1.663724	3

7917	3.007577	0.297302	2

21331	1.031938	0.486174	2

8338	4.751212	0.064693	2

5176	3.692269	1.655113	2

18983	10.448091	0.267652	3

68837	10.585786	0.329557	1

13438	1.604501	0.069064	2

48849	3.679497	0.961466	1

12285	3.795146	0.696694	2

7826	2.531885	1.659173	2

5565	9.733340	0.977746	2

10346	6.093067	1.413798	2

1823	7.712960	1.054927	2

9744	11.470364	0.760461	3

16857	2.886529	0.934416	2

39336	10.054373	1.138351	3

65230	9.972470	0.881876	1

2463	2.335785	1.366145	2

27353	11.375155	1.528626	3

16191	0.000000	0.605619	2

12258	4.126787	0.357501	2

42377	6.319522	1.058602	1

25607	8.680527	0.086955	3

77450	14.856391	1.129823	1

58732	2.454285	0.222380	1

46426	7.292202	0.548607	3

32688	8.745137	0.857348	3

64890	8.579001	0.683048	1

8554	2.507302	0.869177	2

28861	11.415476	1.505466	3

42050	4.838540	1.680892	1

32193	10.339507	0.583646	3

64895	6.573742	1.151433	1

2355	6.539397	0.462065	2

0	2.209159	0.723567	2

70406	11.196378	0.836326	1

57399	4.229595	0.128253	1

41732	9.505944	0.005273	3

11429	8.652725	1.348934	3

75270	17.101108	0.490712	1

5459	7.871839	0.717662	2

73520	8.262131	1.361646	1

40279	9.015635	1.658555	3

21540	9.215351	0.806762	3

17694	6.375007	0.033678	2

22329	2.262014	1.022169	1

46570	5.677110	0.709469	1

42403	11.293017	0.207976	3

33654	6.590043	1.353117	1

9171	4.711960	0.194167	2

28122	8.768099	1.108041	3

34095	11.502519	0.545097	3

1774	4.682812	0.578112	2

40131	12.446578	0.300754	3

13994	12.908384	1.657722	3

77064	12.601108	0.974527	1

11210	3.929456	0.025466	2

6122	9.751503	1.182050	3

15341	3.043767	0.888168	2

44373	4.391522	0.807100	1

28454	11.695276	0.679015	3

63771	7.879742	0.154263	1

9217	5.613163	0.933632	2

69076	9.140172	0.851300	1

24489	4.258644	0.206892	1

16871	6.799831	1.221171	2

39776	8.752758	0.484418	3

5901	1.123033	1.180352	2

40987	10.833248	1.585426	3

7479	3.051618	0.026781	2

38768	5.308409	0.030683	3

4933	1.841792	0.028099	2

32311	2.261978	1.605603	1

26501	11.573696	1.061347	3

37433	8.038764	1.083910	3

23503	10.734007	0.103715	3

68607	9.661909	0.350772	1

27742	9.005850	0.548737	3

11303	0.000000	0.539131	2

0	5.757140	1.062373	2

32729	9.164656	1.624565	3

24619	1.318340	1.436243	1

42414	14.075597	0.695934	3

20210	10.107550	1.308398	3

33225	7.960293	1.219760	3

54483	6.317292	0.018209	1

18475	12.664194	0.595653	3

33926	2.906644	0.581657	1

43865	2.388241	0.913938	1

26547	6.024471	0.486215	3

44404	7.226764	1.255329	3

16674	4.183997	1.275290	2

8123	11.850211	1.096981	3

42747	11.661797	1.167935	3

56054	3.574967	0.494666	1

10933	0.000000	0.107475	2

18121	7.937657	0.904799	3

11272	3.365027	1.014085	2

16297	0.000000	0.367491	2

28168	13.860672	1.293270	3

40963	10.306714	1.211594	3

31685	7.228002	0.670670	3

55164	4.508740	1.036192	1

17595	0.366328	0.163652	2

1862	3.299444	0.575152	2

57087	0.573287	0.607915	1

63082	9.183738	0.012280	1

51213	7.842646	1.060636	3

6487	4.750964	0.558240	2

4805	11.438702	1.556334	3

30302	8.243063	1.122768	3

68680	7.949017	0.271865	1

17591	7.875477	0.227085	2

74391	9.569087	0.364856	1

37217	7.750103	0.869094	3

42814	0.000000	1.515293	1

14738	3.396030	0.633977	2

19896	11.916091	0.025294	3

14673	0.460758	0.689586	2

32011	13.087566	0.476002	3

58736	4.589016	1.672600	1

54744	8.397217	1.534103	1

29482	5.562772	1.689388	1

27698	10.905159	0.619091	3

11443	1.311441	1.169887	2

56117	10.647170	0.980141	3

39514	0.000000	0.481918	1

26627	8.503025	0.830861	3

16525	0.436880	1.395314	2

24368	6.127867	1.102179	1

22160	12.112492	0.359680	3

6030	1.264968	1.141582	2

6468	6.067568	1.327047	2

22945	8.010964	1.681648	3

18520	3.791084	0.304072	2

34914	11.773195	1.262621	3

6121	8.339588	1.443357	2

38063	2.563092	1.464013	1

23410	5.954216	0.953782	1

35073	9.288374	0.767318	3

52914	3.976796	1.043109	1

16801	8.585227	1.455708	3

9533	1.271946	0.796506	2

16721	0.000000	0.242778	2

5832	0.000000	0.089749	2

44591	11.521298	0.300860	3

10143	1.139447	0.415373	2

21609	5.699090	1.391892	2

23817	2.449378	1.322560	1

15640	0.000000	1.228380	2

8847	3.168365	0.053993	2

50939	10.428610	1.126257	3

28521	2.943070	1.446816	1

32901	10.441348	0.975283	3

42850	12.478764	1.628726	3

13499	5.856902	0.363883	2

40345	2.476420	0.096075	1

43547	1.826637	0.811457	1

70758	4.324451	0.328235	1

19780	1.376085	1.178359	2

44484	5.342462	0.394527	1

54462	11.835521	0.693301	3

20085	12.423687	1.424264	3

42291	12.161273	0.071131	3

47550	8.148360	1.649194	3

11938	1.531067	1.549756	2

40699	3.200912	0.309679	1

70908	8.862691	0.530506	1

73989	6.370551	0.369350	1

11872	2.468841	0.145060	2

48463	11.054212	0.141508	3

15987	2.037080	0.715243	2

70036	13.364030	0.549972	1

32967	10.249135	0.192735	3

63249	10.464252	1.669767	1

42795	9.424574	0.013725	3

14459	4.458902	0.268444	2

19973	0.000000	0.575976	2

5494	9.686082	1.029808	3

67902	13.649402	1.052618	1

25621	13.181148	0.273014	3

27545	3.877472	0.401600	1

58656	1.413952	0.451380	1

7327	4.248986	1.430249	2

64555	8.779183	0.845947	1

8998	4.156252	0.097109	2

11752	5.580018	0.158401	2

76319	15.040440	1.366898	1

27665	12.793870	1.307323	3

67417	3.254877	0.669546	1

21808	10.725607	0.588588	3

15326	8.256473	0.765891	2

20057	8.033892	1.618562	3

79341	10.702532	0.204792	1

15636	5.062996	1.132555	2

35602	10.772286	0.668721	3

28544	1.892354	0.837028	1

57663	1.019966	0.372320	1

78727	15.546043	0.729742	1

68255	11.638205	0.409125	1

14964	3.427886	0.975616	2

21835	11.246174	1.475586	3

7487	0.000000	0.645045	2

8700	0.000000	1.424017	2

26226	8.242553	0.279069	3

65899	8.700060	0.101807	1

6543	0.812344	0.260334	2

46556	2.448235	1.176829	1

71038	13.230078	0.616147	1

47657	0.236133	0.340840	1

19600	11.155826	0.335131	3

37422	11.029636	0.505769	3

1363	2.901181	1.646633	2

26535	3.924594	1.143120	1

47707	2.524806	1.292848	1

38055	3.527474	1.449158	1

6286	3.384281	0.889268	2

10747	0.000000	1.107592	2

44883	11.898890	0.406441	3

56823	3.529892	1.375844	1

68086	11.442677	0.696919	1

70242	10.308145	0.422722	1

11409	8.540529	0.727373	2

67671	7.156949	1.691682	1

61238	0.720675	0.847574	1

17774	0.229405	1.038603	2

53376	3.399331	0.077501	1

30930	6.157239	0.580133	1

28987	1.239698	0.719989	1

13655	6.036854	0.016548	2

7227	5.258665	0.933722	2

40409	12.393001	1.571281	3

13605	9.627613	0.935842	2

26400	11.130453	0.597610	3

13491	8.842595	0.349768	3

30232	10.690010	1.456595	3

43253	5.714718	1.674780	3

55536	3.052505	1.335804	1

8807	0.000000	0.059025	2

25783	9.945307	1.287952	3

22812	2.719723	1.142148	1

77826	11.154055	1.608486	1

38172	2.687918	0.660836	1

31676	10.037847	0.962245	3

74038	12.404762	1.112080	1

44738	10.237305	0.633422	3

17410	4.745392	0.662520	2

5688	4.639461	1.569431	2

36642	3.149310	0.639669	1

29956	13.406875	1.639194	3

60350	6.068668	0.881241	1

23758	9.477022	0.899002	3

25780	3.897620	0.560201	2

11342	5.463615	1.203677	2

36109	3.369267	1.575043	1

14292	5.234562	0.825954	2

11160	0.000000	0.722170	2

23762	12.979069	0.504068	3

39567	5.376564	0.557476	1

25647	13.527910	1.586732	3

14814	2.196889	0.784587	2

73590	10.691748	0.007509	1

35187	1.659242	0.447066	1

49459	8.369667	0.656697	3

31657	13.157197	0.143248	3

6259	8.199667	0.908508	2

33101	4.441669	0.439381	3

27107	9.846492	0.644523	3

17824	0.019540	0.977949	2

43536	8.253774	0.748700	3

67705	6.038620	1.509646	1

35283	6.091587	1.694641	3

71308	8.986820	1.225165	1

31054	11.508473	1.624296	3

52387	8.807734	0.713922	3

40328	0.000000	0.816676	1

34844	8.889202	1.665414	3

11607	3.178117	0.542752	2

64306	7.013795	0.139909	1

32721	9.605014	0.065254	3

33170	1.230540	1.331674	1

37192	10.412811	0.890803	3

13089	0.000000	0.567161	2

66491	9.699991	0.122011	1

15941	0.000000	0.061191	2

4272	4.455293	0.272135	2

48812	3.020977	1.502803	1

28818	8.099278	0.216317	3

35394	1.157764	1.603217	1

71791	10.105396	0.121067	1

40668	11.230148	0.408603	3

39580	9.070058	0.011379	3

11786	0.566460	0.478837	2

19251	0.000000	0.487300	2

56594	8.956369	1.193484	3

54495	1.523057	0.620528	1

11844	2.749006	0.169855	2

45465	9.235393	0.188350	3

31033	10.555573	0.403927	3

16633	6.956372	1.519308	2

13887	0.636281	1.273984	2

52603	3.574737	0.075163	1

72000	9.032486	1.461809	1

68497	5.958993	0.023012	1

35135	2.435300	1.211744	1

26397	10.539731	1.638248	3

7313	7.646702	0.056513	2

91273	20.919349	0.644571	1

24743	1.424726	0.838447	1

31690	6.748663	0.890223	3

15432	2.289167	0.114881	2

58394	5.548377	0.402238	1

33962	6.057227	0.432666	1

31442	10.828595	0.559955	3

31044	11.318160	0.271094	3

29938	13.265311	0.633903	3

9875	0.000000	1.496715	2

51542	6.517133	0.402519	3

11878	4.934374	1.520028	2

69241	10.151738	0.896433	1

37776	2.425781	1.559467	1

68997	9.778962	1.195498	1

67416	12.219950	0.657677	1

59225	7.394151	0.954434	1

29138	8.518535	0.742546	3

5962	2.798700	0.662632	2

10847	0.637930	0.617373	2

70527	10.750490	0.097415	1

9610	0.625382	0.140969	2

64734	10.027968	0.282787	1

25941	9.817347	0.364197	3

2763	0.646828	1.266069	2

55601	3.347111	0.914294	1

31128	11.816892	0.193798	3

5181	0.000000	1.480198	2

69982	10.945666	0.993219	1

52440	10.244706	0.280539	3

57350	2.579801	1.149172	1

57869	2.630410	0.098869	1

56557	11.746200	1.695517	3

42342	8.104232	1.326277	3

15560	12.409743	0.790295	3

34826	12.167844	1.328086	3

8569	3.198408	0.299287	2

77623	16.055513	0.541052	1

78184	7.138659	0.158481	1

7036	4.831041	0.761419	2

69616	10.082890	1.373611	1

21546	10.066867	0.788470	3

36715	8.129538	0.329913	3

20522	3.012463	1.138108	2

42349	3.720391	0.845974	1

9037	0.773493	1.148256	2

26728	10.962941	1.037324	3

587	0.177621	0.162614	2

48915	3.085853	0.967899	1

9824	8.426781	0.202558	2

4135	1.825927	1.128347	2

9666	2.185155	1.010173	2

59333	7.184595	1.261338	1

36198	0.000000	0.116525	1

34909	8.901752	1.033527	3

47516	2.451497	1.358795	1

55807	3.213631	0.432044	1

14036	3.974739	0.723929	2

42856	9.601306	0.619232	3

64007	8.363897	0.445341	1

59428	6.381484	1.365019	1

13730	0.000000	1.403914	2

41740	9.609836	1.438105	3

63546	9.904741	0.985862	1

30417	7.185807	1.489102	3

69636	5.466703	1.216571	1

64660	0.000000	0.915898	1

14883	4.575443	0.535671	2

7965	3.277076	1.010868	2

68620	10.246623	1.239634	1

8738	2.341735	1.060235	2

7544	3.201046	0.498843	2

6377	6.066013	0.120927	2

36842	8.829379	0.895657	3

81046	15.833048	1.568245	1

67736	13.516711	1.220153	1

32492	0.664284	1.116755	1

39299	6.325139	0.605109	3

77289	8.677499	0.344373	1

33835	8.188005	0.964896	3

71890	9.414263	0.384030	1

32054	9.196547	1.138253	3

38579	10.202968	0.452363	3

55984	2.119439	1.481661	1

72694	13.635078	0.858314	1

42299	0.083443	0.701669	1

26635	9.149096	1.051446	3

8579	1.933803	1.374388	2

37302	14.115544	0.676198	3

22878	8.933736	0.943352	3

4364	2.661254	0.946117	2

4985	0.988432	1.305027	2

37068	2.063741	1.125946	1

41137	2.220590	0.690754	1

67759	6.424849	0.806641	1

11831	1.156153	1.613674	2

34502	3.032720	0.601847	1

4088	3.076828	0.952089	2

15199	0.000000	0.318105	2

17309	7.750480	0.554015	3

42816	10.958135	1.482500	3

43751	10.222018	0.488678	3

58335	2.367988	0.435741	1

75039	7.686054	1.381455	1

42878	11.464879	1.481589	3

42770	11.075735	0.089726	3

8848	3.543989	0.345853	2

31340	8.123889	1.282880	3

41413	4.331769	0.754467	3

12731	0.120865	1.211961	2

22447	6.116109	0.701523	3

33564	7.474534	0.505790	3

48907	8.819454	0.649292	3

8762	6.802144	0.615284	2

46696	12.666325	0.931960	3

36851	8.636180	0.399333	3

67639	11.730991	1.289833	1

171	8.132449	0.039062	2

26674	10.296589	1.496144	3

8739	7.583906	1.005764	2

66668	9.777806	0.496377	1

68732	8.833546	0.513876	1

69995	4.907899	1.518036	1

82008	8.362736	1.285939	1

25054	9.084726	1.606312	3

33085	14.164141	0.560970	3

41379	9.080683	0.989920	3

39417	6.522767	0.038548	3

12556	3.690342	0.462281	2

39432	3.563706	0.242019	1

38010	1.065870	1.141569	1

69306	6.683796	1.456317	1

38000	1.712874	0.243945	1

46321	13.109929	1.280111	3

66293	11.327910	0.780977	1

22730	4.545711	1.233254	1

5952	3.367889	0.468104	2

72308	8.326224	0.567347	1

60338	8.978339	1.442034	1

13301	5.655826	1.582159	2

27884	8.855312	0.570684	3

11188	6.649568	0.544233	2

56796	3.966325	0.850410	1

8571	1.924045	1.664782	2

4914	6.004812	0.280369	2

10784	0.000000	0.375849	2

39296	9.923018	0.092192	3

13113	2.389084	0.119284	2

70204	13.663189	0.133251	1

46813	11.434976	0.321216	3

11697	0.358270	1.292858	2

44183	9.598873	0.223524	3

2225	6.375275	0.608040	2

29066	11.580532	0.458401	3

4245	5.319324	1.598070	2

34379	4.324031	1.603481	1

44441	2.358370	1.273204	1

2022	0.000000	1.182708	2

26866	12.824376	0.890411	3

57070	1.587247	1.456982	1

32932	8.510324	1.520683	3

51967	10.428884	1.187734	3

44432	8.346618	0.042318	3

67066	7.541444	0.809226	1

17262	2.540946	1.583286	2

79728	9.473047	0.692513	1

14259	0.352284	0.474080	2

6122	0.000000	0.589826	2

76879	12.405171	0.567201	1

11426	4.126775	0.871452	2

2493	0.034087	0.335848	2

19910	1.177634	0.075106	2

10939	0.000000	0.479996	2

17716	0.994909	0.611135	2

31390	11.053664	1.180117	3

20375	0.000000	1.679729	2

26309	2.495011	1.459589	1

33484	11.516831	0.001156	3

45944	9.213215	0.797743	3

4249	5.332865	0.109288	2

6089	0.000000	1.689771	2

7513	0.000000	1.126053	2

27862	12.640062	1.690903	3

39038	2.693142	1.317518	1

19218	3.328969	0.268271	2

62911	7.193166	1.117456	1

77758	6.615512	1.521012	1

27940	8.000567	0.835341	3

2194	4.017541	0.512104	2

37072	13.245859	0.927465	3

15585	5.970616	0.813624	2

25577	11.668719	0.886902	3

8777	4.283237	1.272728	2

29016	10.742963	0.971401	3

21910	12.326672	1.592608	3

12916	0.000000	0.344622	2

10976	0.000000	0.922846	2

79065	10.602095	0.573686	1

36759	10.861859	1.155054	3

50011	1.229094	1.638690	1

1155	0.410392	1.313401	2

71600	14.552711	0.616162	1

30817	14.178043	0.616313	3

54559	14.136260	0.362388	1

29764	0.093534	1.207194	1

69100	10.929021	0.403110	1

47324	11.432919	0.825959	3

73199	9.134527	0.586846	1

44461	5.071432	1.421420	1

45617	11.460254	1.541749	3

28221	11.620039	1.103553	3

7091	4.022079	0.207307	2

6110	3.057842	1.631262	2

79016	7.782169	0.404385	1

18289	7.981741	0.929789	3

43679	4.601363	0.268326	1

22075	2.595564	1.115375	1

23535	10.049077	0.391045	3

25301	3.265444	1.572970	2

32256	11.780282	1.511014	3

36951	3.075975	0.286284	1

31290	1.795307	0.194343	1

38953	11.106979	0.202415	3

35257	5.994413	0.800021	1

25847	9.706062	1.012182	3

32680	10.582992	0.836025	3

62018	7.038266	1.458979	1

9074	0.023771	0.015314	2

33004	12.823982	0.676371	3

44588	3.617770	0.493483	1

32565	8.346684	0.253317	3

38563	6.104317	0.099207	1

75668	16.207776	0.584973	1

9069	6.401969	1.691873	2

53395	2.298696	0.559757	1

28631	7.661515	0.055981	3

71036	6.353608	1.645301	1

71142	10.442780	0.335870	1

37653	3.834509	1.346121	1

76839	10.998587	0.584555	1

9916	2.695935	1.512111	2

38889	3.356646	0.324230	1

39075	14.677836	0.793183	3

48071	1.551934	0.130902	1

7275	2.464739	0.223502	2

41804	1.533216	1.007481	1

35665	12.473921	0.162910	3

67956	6.491596	0.032576	1

41892	10.506276	1.510747	3

38844	4.380388	0.748506	1

74197	13.670988	1.687944	1

14201	8.317599	0.390409	2

3908	0.000000	0.556245	2

2459	0.000000	0.290218	2

32027	10.095799	1.188148	3

12870	0.860695	1.482632	2

9880	1.557564	0.711278	2

72784	10.072779	0.756030	1

17521	0.000000	0.431468	2

50283	7.140817	0.883813	3

33536	11.384548	1.438307	3

9452	3.214568	1.083536	2

37457	11.720655	0.301636	3

17724	6.374475	1.475925	3

43869	5.749684	0.198875	3

264	3.871808	0.552602	2

25736	8.336309	0.636238	3

39584	9.710442	1.503735	3

31246	1.532611	1.433898	1

49567	9.785785	0.984614	3

7052	2.633627	1.097866	2

35493	9.238935	0.494701	3

10986	1.205656	1.398803	2

49508	3.124909	1.670121	1

5734	7.935489	1.585044	2

65479	12.746636	1.560352	1

77268	10.732563	0.545321	1

28490	3.977403	0.766103	1

13546	4.194426	0.450663	2

37166	9.610286	0.142912	3

16381	4.797555	1.260455	2

10848	1.615279	0.093002	2

35405	4.614771	1.027105	1

15917	0.000000	1.369726	2

6131	0.608457	0.512220	2

67432	6.558239	0.667579	1

30354	12.315116	0.197068	3

69696	7.014973	1.494616	1

33481	8.822304	1.194177	3

43075	10.086796	0.570455	3

38343	7.241614	1.661627	3

14318	4.602395	1.511768	2

5367	7.434921	0.079792	2

37894	10.467570	1.595418	3

36172	9.948127	0.003663	3

40123	2.478529	1.568987	1

10976	5.938545	0.878540	2

12705	0.000000	0.948004	2

12495	5.559181	1.357926	2

35681	9.776654	0.535966	3

46202	3.092056	0.490906	1

11505	0.000000	1.623311	2

22834	4.459495	0.538867	1

49901	8.334306	1.646600	3

71932	11.226654	0.384686	1

13279	3.904737	1.597294	2

49112	7.038205	1.211329	3

77129	9.836120	1.054340	1

37447	1.990976	0.378081	1

62397	9.005302	0.485385	1

0	1.772510	1.039873	2

15476	0.458674	0.819560	2

40625	10.003919	0.231658	3

36706	0.520807	1.476008	1

28580	10.678214	1.431837	3

25862	4.425992	1.363842	1

63488	12.035355	0.831222	1

33944	10.606732	1.253858	3

30099	1.568653	0.684264	1

13725	2.545434	0.024271	2

36768	10.264062	0.982593	3

64656	9.866276	0.685218	1

14927	0.142704	0.057455	2

43231	9.853270	1.521432	3

66087	6.596604	1.653574	1

19806	2.602287	1.321481	2

41081	10.411776	0.664168	3

10277	7.083449	0.622589	2

7014	2.080068	1.254441	2

17275	0.522844	1.622458	2

31600	10.362000	1.544827	3

59956	3.412967	1.035410	1

42181	6.796548	1.112153	3

51743	4.092035	0.075804	1

5194	2.763811	1.564325	2

30832	12.547439	1.402443	3

7976	5.708052	1.596152	2

14602	4.558025	0.375806	2

41571	11.642307	0.438553	3

55028	3.222443	0.121399	1

5837	4.736156	0.029871	2

39808	10.839526	0.836323	3

20944	4.194791	0.235483	2

22146	14.936259	0.888582	3

42169	3.310699	1.521855	1

7010	2.971931	0.034321	2

3807	9.261667	0.537807	2

29241	7.791833	1.111416	3

52696	1.480470	1.028750	1

42545	3.677287	0.244167	1

24437	2.202967	1.370399	1

16037	5.796735	0.935893	2

8493	3.063333	0.144089	2

68080	11.233094	0.492487	1

59016	1.965570	0.005697	1

11810	8.616719	0.137419	2

68630	6.609989	1.083505	1

7629	1.712639	1.086297	2

71992	10.117445	1.299319	1

13398	0.000000	1.104178	2

26241	9.824777	1.346821	3

11160	1.653089	0.980949	2

76701	18.178822	1.473671	1

32174	6.781126	0.885340	3

45043	8.206750	1.549223	3

42173	10.081853	1.376745	3

69801	6.288742	0.112799	1

41737	3.695937	1.543589	1

46979	6.726151	1.069380	3

79267	12.969999	1.568223	1

4615	2.661390	1.531933	2

32907	7.072764	1.117386	3

37444	9.123366	1.318988	3

569	3.743946	1.039546	2

8723	2.341300	0.219361	2

6024	0.541913	0.592348	2

52252	2.310828	1.436753	1

8358	6.226597	1.427316	2

26166	7.277876	0.489252	3

18471	0.000000	0.389459	2

3386	7.218221	1.098828	2

41544	8.777129	1.111464	3

10480	2.813428	0.819419	2

5894	2.268766	1.412130	2

7273	6.283627	0.571292	2

22272	7.520081	1.626868	3

31369	11.739225	0.027138	3

10708	3.746883	0.877350	2

69364	12.089835	0.521631	1

37760	12.310404	0.259339	3

13004	0.000000	0.671355	2

37885	2.728800	0.331502	1

52555	10.814342	0.607652	3

38997	12.170268	0.844205	3

69698	6.698371	0.240084	1

11783	3.632672	1.643479	2

47636	10.059991	0.892361	3

15744	1.887674	0.756162	2

69058	8.229125	0.195886	1

33057	7.817082	0.476102	3

28681	12.277230	0.076805	3

34042	10.055337	1.115778	3

29928	3.596002	1.485952	1

9734	2.755530	1.420655	2

7344	7.780991	0.513048	2

7387	0.093705	0.391834	2

33957	8.481567	0.520078	3

9936	3.865584	0.110062	2

36094	9.683709	0.779984	3

39835	10.617255	1.359970	3

64486	7.203216	1.624762	1

0	7.601414	1.215605	2

39539	1.386107	1.417070	1

66972	9.129253	0.594089	1

15029	1.363447	0.620841	2

44909	3.181399	0.359329	1

38183	13.365414	0.217011	3

37372	4.207717	1.289767	1

0	4.088395	0.870075	2

17786	3.327371	1.142505	2

39055	1.303323	1.235650	1

37045	7.999279	1.581763	3

6435	2.217488	0.864536	2

72265	7.751808	0.192451	1

28152	14.149305	1.591532	3

25931	8.765721	0.152808	3

7538	3.408996	0.184896	2

1315	1.251021	0.112340	2

12292	6.160619	1.537165	2

49248	1.034538	1.585162	1

9025	0.000000	1.034635	2

13438	2.355051	0.542603	2

69683	6.614543	0.153771	1

25374	10.245062	1.450903	3

55264	3.467074	1.231019	1

38324	7.487678	1.572293	3

69643	4.624115	1.185192	1

44058	8.995957	1.436479	3

41316	11.564476	0.007195	3

29119	3.440948	0.078331	1

51656	1.673603	0.732746	1

3030	4.719341	0.699755	2

35695	10.304798	1.576488	3

1537	2.086915	1.199312	2

9083	6.338220	1.131305	2

47744	8.254926	0.710694	3

71372	16.067108	0.974142	1

37980	1.723201	0.310488	1

42385	3.785045	0.876904	1

22687	2.557561	0.123738	1

39512	9.852220	1.095171	3

11885	3.679147	1.557205	2

4944	9.789681	0.852971	2

73230	14.958998	0.526707	1

17585	11.182148	1.288459	3

68737	7.528533	1.657487	1

13818	5.253802	1.378603	2

31662	13.946752	1.426657	3

86686	15.557263	1.430029	1

43214	12.483550	0.688513	3

24091	2.317302	1.411137	1

52544	10.069724	0.766119	3

61861	5.792231	1.615483	1

47903	4.138435	0.475994	1

37190	12.929517	0.304378	3

6013	9.378238	0.307392	2

27223	8.361362	1.643204	3

69027	7.939406	1.325042	1

78642	10.735384	0.705788	1

30254	11.592723	0.286188	3

21704	10.098356	0.704748	3

34985	9.299025	0.545337	3

31316	11.158297	0.218067	3

76368	16.143900	0.558388	1

27953	10.971700	1.221787	3

152	0.000000	0.681478	2

9146	3.178961	1.292692	2

75346	17.625350	0.339926	1

26376	1.995833	0.267826	1

35255	10.640467	0.416181	3

19198	9.628339	0.985462	3

12518	4.662664	0.495403	2

25453	5.754047	1.382742	2

12530	0.000000	0.037146	2

62230	9.334332	0.198118	1

9517	3.846162	0.619968	2

71161	10.685084	0.678179	1

1593	4.752134	0.359205	2

33794	0.697630	0.966786	1

39710	10.365836	0.505898	3

16941	0.461478	0.352865	2

69209	11.339537	1.068740	1

4446	5.420280	0.127310	2

9347	3.469955	1.619947	2

55635	8.517067	0.994858	3

65889	8.306512	0.413690	1

10753	2.628690	0.444320	2

7055	0.000000	0.802985	2

7905	0.000000	1.170397	2

53447	7.298767	1.582346	3

9194	7.331319	1.277988	2

61914	9.392269	0.151617	1

15630	5.541201	1.180596	2

79194	15.149460	0.537540	1

12268	5.515189	0.250562	2

33682	7.728898	0.920494	3

26080	11.318785	1.510979	3

19119	3.574709	1.531514	2

30902	7.350965	0.026332	3

63039	7.122363	1.630177	1

51136	1.828412	1.013702	1

35262	10.117989	1.156862	3

42776	11.309897	0.086291	3

64191	8.342034	1.388569	1

15436	0.241714	0.715577	2

14402	10.482619	1.694972	2

6341	9.289510	1.428879	2

14113	4.269419	0.134181	2

6390	0.000000	0.189456	2

8794	0.817119	0.143668	2

43432	1.508394	0.652651	1

38334	9.359918	0.052262	3

34068	10.052333	0.550423	3

30819	11.111660	0.989159	3

22239	11.265971	0.724054	3

28725	10.383830	0.254836	3

57071	3.878569	1.377983	1

72420	13.679237	0.025346	1

28294	10.526846	0.781569	3

9896	0.000000	0.924198	2

65821	4.106727	1.085669	1

7645	8.118856	1.470686	2

71289	7.796874	0.052336	1

5128	2.789669	1.093070	2

13711	6.226962	0.287251	2

22240	10.169548	1.660104	3

15092	0.000000	1.370549	2

5017	7.513353	0.137348	2

10141	8.240793	0.099735	2

35570	14.612797	1.247390	3

46893	3.562976	0.445386	1

8178	3.230482	1.331698	2

55783	3.612548	1.551911	1

1148	0.000000	0.332365	2

10062	3.931299	0.487577	2

74124	14.752342	1.155160	1

66603	10.261887	1.628085	1

11893	2.787266	1.570402	2

50908	15.112319	1.324132	3

39891	5.184553	0.223382	3

65915	3.868359	0.128078	1

65678	3.507965	0.028904	1

62996	11.019254	0.427554	1

36851	3.812387	0.655245	1

36669	11.056784	0.378725	3

38876	8.826880	1.002328	3

26878	11.173861	1.478244	3

46246	11.506465	0.421993	3

12761	7.798138	0.147917	3

35282	10.155081	1.370039	3

68306	10.645275	0.693453	1

31262	9.663200	1.521541	3

34754	10.790404	1.312679	3

13408	2.810534	0.219962	2

30365	9.825999	1.388500	3

10709	1.421316	0.677603	2

24332	11.123219	0.809107	3

45517	13.402206	0.661524	3

6178	1.212255	0.836807	2

10639	1.568446	1.297469	2

29613	3.343473	1.312266	1

22392	5.400155	0.193494	1

51126	3.818754	0.590905	1

53644	7.973845	0.307364	3

51417	9.078824	0.734876	3

24859	0.153467	0.766619	1

61732	8.325167	0.028479	1

71128	7.092089	1.216733	1

27276	5.192485	1.094409	3

30453	10.340791	1.087721	3

18670	2.077169	1.019775	2

70600	10.151966	0.993105	1

12683	0.046826	0.809614	2

81597	11.221874	1.395015	1

69959	14.497963	1.019254	1

8124	3.554508	0.533462	2

18867	3.522673	0.086725	2

80886	14.531655	0.380172	1

55895	3.027528	0.885457	1

31587	1.845967	0.488985	1

10591	10.226164	0.804403	3

70096	10.965926	1.212328	1

53151	2.129921	1.477378	1

11992	0.000000	1.606849	2

33114	9.489005	0.827814	3

7413	0.000000	1.020797	2

10583	0.000000	1.270167	2

58668	6.556676	0.055183	1

35018	9.959588	0.060020	3

70843	7.436056	1.479856	1

14011	0.404888	0.459517	2

35015	9.952942	1.650279	3

70839	15.600252	0.021935	1

3024	2.723846	0.387455	2

5526	0.513866	1.323448	2

5113	0.000000	0.861859	2

20851	7.280602	1.438470	2

40999	9.161978	1.110180	3

15823	0.991725	0.730979	2

35432	7.398380	0.684218	3

53711	12.149747	1.389088	3

64371	9.149678	0.874905	1

9289	9.666576	1.370330	2

60613	3.620110	0.287767	1

18338	5.238800	1.253646	2

22845	14.715782	1.503758	3

74676	14.445740	1.211160	1

34143	13.609528	0.364240	3

14153	3.141585	0.424280	2

9327	0.000000	0.120947	2

18991	0.454750	1.033280	2

9193	0.510310	0.016395	2

2285	3.864171	0.616349	2

9493	6.724021	0.563044	2

2371	4.289375	0.012563	2

13963	0.000000	1.437030	2

2299	3.733617	0.698269	2

5262	2.002589	1.380184	2

4659	2.502627	0.184223	2

17582	6.382129	0.876581	2

27750	8.546741	0.128706	3

9868	2.694977	0.432818	2

18333	3.951256	0.333300	2

3780	9.856183	0.329181	2

18190	2.068962	0.429927	2

11145	3.410627	0.631838	2

68846	9.974715	0.669787	1

26575	10.650102	0.866627	3

48111	9.134528	0.728045	3

43757	7.882601	1.332446	3

 

 

 

2、python实现

import numpy as np
import pandas as pd

# 读取数据
dataarr=pd.read_csv('../../datingTestSet.txt')
dataset=[]
for row in dataarr.itertuples():
    if row:
        line=row._1
        line=line.strip()
        dataset.append(np.array(line.split('\t')))
dataset=np.array(dataset)
dataset = dataset.astype(float)    
X = dataset[:, 0: 3]
y = dataset[:, -1]
# testt=[[43605  ,  0.120460  ,  1.352013]]

# 切分数据集为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

# 归一化数据
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# 训练模型
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(X_train, y_train)
 
# 测试模型
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
cm = confusion_matrix(y_test, y_pred)
print(cm)
print( y_test, "--",y_pred) 
print(classification_report(y_test, y_pred))

 

分享到:
评论

相关推荐

    kNN(邻近算法)算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是...

    KNN分类模拟退火优化最邻近分类算法CS-KNN、蝗虫算法优化最邻近分类算法GOA-KNN数据分类含Mat

    智能优化算法优化最邻近分类算法KNN分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化KNN 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化KNN 4.4.3 灰狼算法GWO/狼群算法WPA优化KNN 4.4.4 鲸鱼算法WOA...

    模拟退火优化最邻近分类算法CS-KNN、蝗虫算法优化最邻近分类算法GOA-KNN数据分类2275期】.zip

    智能优化算法优化最邻近分类算法KNN分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化KNN 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化KNN 4.4.3 灰狼算法GWO/狼群算法WPA优化KNN 4.4.4 鲸鱼算法WOA...

    模糊knn最邻近算法

    传统kNN算法在进行分类时,通常只考虑距离最近的k个样本,并根据这些样本的类别来进行预测。而在模糊kNN算法中,不仅考虑了样本间的距离,还利用了模糊集合理论中的隶属度概念,为每个样本分配一个权重,进而对最终...

    knn.zip_K._java KNN_knn、KNN、邻近算法_knn算法

    KNN(K-最近邻)算法是机器学习领域中一种基础且重要的分类和回归方法,尤其在模式识别和数据挖掘中被广泛应用。本项目通过Java语言实现了一个简单的KNN算法,帮助初学者理解该算法的基本原理和编程实现。 1. **KNN...

    模拟退火优化最邻近分类算法CS-KNN、蝗虫算法优化最邻近分类算法GOA-KNN数据分类Matlab源码 2275期.zip

    Matlab领域上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:ga_2d_box_packing_test_task.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 ...

    4.1 最邻近规则分类(K-Nearest Neighbor)KNN算法

    4.1 最邻近规则分类(K-Nearest Neighbor)KNN算法

    KNN邻近算法实现

    KNN(K-Nearest Neighbors)...总的来说,KNN邻近算法是机器学习中的基础工具,虽然简单但效果良好,尤其适用于小规模数据集或作为其他复杂算法的基准。通过理解其原理和实现细节,我们可以更好地应用和改进这个算法。

    人工智能-KNN-K近邻算法-iris-鸢尾花识别

    本资源是关于人工智能领域K近邻算法(KNN)的实例演示-鸢尾花识别-使用excel分辨鸢尾花种类,内容详细解读KNN如何解决分类问题,为大众提供一种解决问题的全新方法。内含各大公式作用指导,帮助大家进一步理解何为KNN...

    C++实现K最邻近算法(机器学习 KNN KD树)

    在机器学习领域,K最邻近算法(K-Nearest Neighbors, KNN)是一种简单而有效的非参数方法,常用于分类和回归任务。本文将详细介绍C++如何实现KNN算法,并结合KD树(K-Dimensional Tree)进行优化,以提高在大数据集...

    最邻近算法KNN识别字符

    最邻近算法(K-Nearest Neighbors, KNN)是一种经典的监督学习方法,常用于分类和回归问题。在字符识别领域,KNN算法表现出了高效且实用的特性。本篇将深入探讨KNN算法的基本原理、实现步骤以及在字符识别中的应用。...

    knn邻近算法

    KNN,全称为K-Nearest Neighbors,是一种...总结,KNN邻近算法是一种直观且实用的机器学习方法,尽管存在计算复杂性等问题,但通过适当优化和选择合适的工具(如MATLAB和Python),仍能在许多实际场景下发挥重要作用。

    KNN算法实验报告.pdf

    该算法的核心思想是,如果一个样本在特征空间中的 k 个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 KNN 算法的优点是: 1. 简单易懂,易于实现 2. 可以处理高维数据 3...

    KNN植物分类算法实例

    在这个"KNN植物分类算法实例"中,压缩包中的"算法源代码工程"可能包含实现KNN算法的Python代码,例如使用sklearn库。这些代码通常会包括数据加载、预处理、模型训练、预测以及性能评估等部分。通过阅读和理解代码,...

    4.2 最邻近规则分类(K-Nearest Neighbor)KNN算法应用_files.zip

    最邻近规则分类(K-Nearest Neighbor,简称KNN)是机器学习领域中最基础的算法之一,尤其在监督学习中扮演着重要角色。KNN算法应用广泛,尤其是在分类问题中,例如图像识别、文本分类等。这个压缩包文件可能包含了...

    K最邻近法KNN分类算法(单点、多点分类预测)

    **K最邻近法(K-Nearest Neighbors, KNN)**是一种经典的监督学习算法,主要用于分类问题。它的核心思想是:一个未知类别的样本点可以通过查找其在训练集中最近的K个已知类别样本点,根据这些点的类别进行投票来决定...

    使用机器学习KNN算法对水果进行分类(附源码及数据)

    KNN(K- Nearest Neighbor)法即K最邻近法,最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征...

    最邻近算法_knn_K._shop1bc_最邻近算法_

    最邻近算法(K-Nearest Neighbors,简称KNN)是一种基础且广泛应用的监督学习方法,主要用于分类和回归问题。在KNN算法中,我们假设一个实例将被分配到与其最近的邻居最多的类别,这一原则被称为“局部一致”或...

Global site tag (gtag.js) - Google Analytics