数据挖掘领域十大经典算法
下面是参与评比的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。在我们学习数据挖掘时,可以以这18种算法为主线,如果能把每一种算法都弄懂,整个数据挖掘领域就掌握得差不多了。另外,也可以用这18种算法的熟悉程度来判断自己知识的掌握程度。
Classification
==============
#1. C4.5
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc.
Google Scholar Count in October 2006: 6907
#2. CART
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.
Google Scholar Count in October 2006: 6078
#3. K Nearest Neighbours (kNN)
Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest
Neighbor Classification. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.
DOI= http://dx.doi.org/10.1109/34.506411
Google SCholar Count: 183
#4. Naive Bayes
Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?
Internat. Statist. Rev. 69, 385-398.
Google Scholar Count in October 2006: 51
Statistical Learning
====================
#5. SVM
Vapnik, V. N. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag New York, Inc.
Google Scholar Count in October 2006: 6441
#6. EM
McLachlan, G. and Peel, D. (2000). Finite Mixture Models.
J. Wiley, New York.
Google Scholar Count in October 2006: 848
Association Analysis
====================
#7. Apriori
Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th Int'l Conference on Very Large
Databases (VLDB '94), Santiago, Chile, September 1994.
http://citeseer.comp.nus.edu.sg/agrawal94fast.html
Google Scholar Count in October 2006: 3639
#8. FP-Tree
Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD
international Conference on Management of Data (Dallas, Texas, United
States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.
DOI= http://doi.acm.org/10.1145/342009.335372
Google Scholar Count in October 2006: 1258
Link Mining
===========
#9. PageRank
Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the Seventh international
Conference on World Wide Web (WWW-7) (Brisbane,
Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, 107-117.
DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X
Google Shcolar Count: 2558
#10. HITS
Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, California, United States, January
25 - 27, 1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 668-677.
Google Shcolar Count: 2240
Clustering
==========
#11. K-Means
MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, in Proc. 5th Berkeley Symp. Mathematical
Statistics and Probability, 1967, pp. 281-297.
Google Scholar Count in October 2006: 1579
#12. BIRCH
Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient
data clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international Conference on Management of Data
(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.
SIGMOD '96. ACM Press, New York, NY, 103-114.
DOI= http://doi.acm.org/10.1145/233269.233324
Google Scholar Count in October 2006: 853
Bagging and Boosting
====================
#13. AdaBoost
Freund, Y. and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.
DOI= http://dx.doi.org/10.1006/jcss.1997.1504
Google Scholar Count in October 2006: 1576
Sequential Patterns
===================
#14. GSP
Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th international Conference on Extending Database Technology:
Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,
M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer
Science, vol. 1057. Springer-Verlag, London, 3-17.
Google Scholar Count in October 2006: 596
#15. PrefixSpan
J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and
M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth. In Proceedings of the 17th
international Conference on Data Engineering (April 02 - 06,
2001). ICDE '01. IEEE Computer Society, Washington, DC.
Google Scholar Count in October 2006: 248
Integrated Mining
=================
#16. CBA
Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and
association rule mining. KDD-98, 1998, pp. 80-86.
http://citeseer.comp.nus.edu.sg/liu98integrating.html
Google Scholar Count in October 2006: 436
Rough Sets
==========
#17. Finding reduct
Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publishers, Norwell, MA, 1992
Google Scholar Count in October 2006: 329
Graph Mining
============
#18. gSpan
Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer
Society, Washington, DC.
Google Scholar Count in October 2006: 155
分享到:
相关推荐
数据挖掘算法使用python3实现数据挖掘领域十大经典算法。十大经典算法如下1. C4.5 / 决策树算法的一种2. K-Means/K-均值算法3. 支持向量机4. Apriori5. 新兴市场6. PageRank7. AdaBoost8. kNN/K-邻近算法9. 朴素...
数据挖掘十大经典机器学习算法,国际权威的学术组织 the IEEE International Conference on Data Mining (ICDM) 2006 年 12 月评选出了数据挖掘领域的十大经典算法: C4.5, k-Means, SVM, Apriori, EM, PageRank, ...
这些经典算法在数据挖掘领域具有广泛的应用,例如在市场分析、客户细分、预测模型、推荐系统、文本分类等场景中都有出色的表现。掌握这些算法能够帮助数据科学家和分析师更好地理解和解决实际问题,提升数据分析的...
在数据挖掘领域,掌握经典算法是至关重要的。Python作为一门强大的编程语言,因其简洁的语法和丰富的库支持,成为实现这些算法的首选工具。在这个压缩包中,包含了SVM(支持向量机)、AdaBoost、C4.5决策树、CART...
数据挖掘领域的十大经典算法在信息技术和互联网行业中具有广泛的应用,这些算法通过处理和解析大量数据,帮助企业和研究者发现潜在的模式、趋势和关联。以下是这些算法的详细说明: 1. **C4.5**:C4.5是ID3算法的...
数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域...
此外,压缩包中提到的"数据挖掘领域十大算法"可能包括其他经典算法,如ID3、C4.5、随机森林、支持向量机、K近邻、神经网络、Adaboost、GBDT(梯度提升决策树)、贝叶斯网络和PCA(主成分分析)。这些算法各有特色,...
### 数据挖掘领域十大经典算法解析 #### 一、引言 数据挖掘作为计算机科学的一个重要分支,致力于从海量数据中提取有价值的信息与知识。随着大数据时代的到来,数据挖掘技术的应用越来越广泛,对于算法的选择和...
十大经典数据挖掘算法由IEEE International Conference on Data Mining (ICDM)在2006年评选出,其中包括: 1. **C4.5**:这是一种决策树算法,是对ID3算法的改进。C4.5使用信息增益率代替信息增益来选择最佳划分...
本压缩包"数据挖掘领域十大算法代码实现C4.5.rar"包含了对C4.5决策树算法的Python实现,这是一种广泛应用的分类算法,尤其适合于处理离散型和连续型特征的数据集。 C4.5算法是Quinlan在ID3算法基础上发展起来的,...
《数据挖掘领域十大算法及其PageRank代码实现》 在数据挖掘和人工智能的世界中,算法扮演着至关重要的角色。PageRank是Google创始人拉里·佩奇发明的一种网页排名算法,它在互联网搜索引擎优化(SEO)和链接分析中...
国际权威的学术组织评选出了数据挖掘领域的十大经典算法:C4.5, k-...不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
本文将详细介绍数据挖掘领域的十大经典算法,涵盖分类、聚类、关联规则等多个方面。 #### 二、经典算法概述 ##### 1.1 C4.5算法 **简介** C4.5算法是一种基于决策树的分类算法,由Ross Quinlan在1993年提出。它...
数据挖掘领域十大算法代码实现数据挖掘十大算法大家好!该仓库主要包含数据挖掘中十大算法的实现源代码。大多数演示将使用python作为编程语言。如果您对这项工作感兴趣,请加入我:)。如有任何问题或建议,请发邮件至...