`

数据挖掘领域十大经典算法

阅读更多

 

数据挖掘领域十大经典算法

 

下面是参与评比的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。在我们学习数据挖掘时,可以以这18种算法为主线,如果能把每一种算法都弄懂,整个数据挖掘领域就掌握得差不多了。另外,也可以用这18种算法的熟悉程度来判断自己知识的掌握程度。

 

Classification

==============

 

 #1. C4.5

 

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers Inc.

 

Google Scholar Count in October 2006: 6907

 

 #2. CART

 

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Wadsworth, Belmont, CA, 1984.

 

Google Scholar Count in October 2006: 6078

 

 #3. K Nearest Neighbours (kNN)

 

Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest

Neighbor Classification. IEEE Trans. Pattern

Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616.

DOI= http://dx.doi.org/10.1109/34.506411

 

Google SCholar Count: 183

 

 #4. Naive Bayes

 

Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?

Internat. Statist. Rev. 69, 385-398.

 

Google Scholar Count in October 2006: 51

 

Statistical Learning

====================

 

 #5. SVM

 

Vapnik, V. N. 1995. The Nature of Statistical Learning

Theory. Springer-Verlag New York, Inc.

 

Google Scholar Count in October 2006: 6441

 

 #6. EM

 

McLachlan, G. and Peel, D. (2000). Finite Mixture Models.

J. Wiley, New York.

 

Google Scholar Count in October 2006: 848

 

Association Analysis

====================

 

 #7. Apriori

 

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining

Association Rules. In Proc. of the 20th Int'l Conference on Very Large

Databases (VLDB '94), Santiago, Chile, September 1994.

http://citeseer.comp.nus.edu.sg/agrawal94fast.html

 

Google Scholar Count in October 2006: 3639

 

 #8. FP-Tree

 

Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without

candidate generation. In Proceedings of the 2000 ACM SIGMOD

international Conference on Management of Data (Dallas, Texas, United

States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.

DOI= http://doi.acm.org/10.1145/342009.335372

 

Google Scholar Count in October 2006: 1258

 

Link Mining

===========

 

 #9. PageRank

 

Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual

Web search engine. In Proceedings of the Seventh international

Conference on World Wide Web (WWW-7) (Brisbane,

Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science

Publishers B. V., Amsterdam, The Netherlands, 107-117.

DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X

 

Google Shcolar Count: 2558

 

 #10. HITS

 

Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked

environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms (San Francisco, California, United States, January

25 - 27, 1998). Symposium on Discrete Algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, PA, 668-677.

 

Google Shcolar Count: 2240

 

Clustering

==========

 

 #11. K-Means

 

MacQueen, J. B., Some methods for classification and analysis of

multivariate observations, in Proc. 5th Berkeley Symp. Mathematical

Statistics and Probability, 1967, pp. 281-297.

 

Google Scholar Count in October 2006: 1579

 

 #12. BIRCH

 

Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient

data clustering method for very large databases. In Proceedings of the

1996 ACM SIGMOD international Conference on Management of Data

(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed.

SIGMOD '96. ACM Press, New York, NY, 103-114.

DOI= http://doi.acm.org/10.1145/233269.233324

 

Google Scholar Count in October 2006: 853

 

Bagging and Boosting

====================

 

 #13. AdaBoost

 

Freund, Y. and Schapire, R. E. 1997. A decision-theoretic

generalization of on-line learning and an application to

boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139.

DOI= http://dx.doi.org/10.1006/jcss.1997.1504

 

Google Scholar Count in October 2006: 1576

 

Sequential Patterns

===================

 

 #14. GSP

 

Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:

Generalizations and Performance Improvements. In Proceedings of the

5th international Conference on Extending Database Technology:

Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,

M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer

Science, vol. 1057. Springer-Verlag, London, 3-17.

 

Google Scholar Count in October 2006: 596

 

 #15. PrefixSpan

 

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and

M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by

Prefix-Projected Pattern Growth. In Proceedings of the 17th

international Conference on Data Engineering (April 02 - 06,

2001). ICDE '01. IEEE Computer Society, Washington, DC.

  

Google Scholar Count in October 2006: 248

 

Integrated Mining

=================

 

 #16. CBA

 

Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and

association rule mining. KDD-98, 1998, pp. 80-86.

http://citeseer.comp.nus.edu.sg/liu98integrating.html

 

Google Scholar Count in October 2006: 436

  

 

Rough Sets

==========

 

 #17. Finding reduct

 

Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about

Data, Kluwer Academic Publishers, Norwell, MA, 1992

 

Google Scholar Count in October 2006: 329

 

Graph Mining

============

 

 #18. gSpan

 

Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern

Mining. In Proceedings of the 2002 IEEE International Conference on

Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer

Society, Washington, DC.

 

Google Scholar Count in October 2006: 155

 

 

分享到:
评论

相关推荐

    用python实现SVM,AdaBoost,C4.5,CART,Naïve Bayes等数据挖掘领域十大经典算法.zip

    数据挖掘算法使用python3实现数据挖掘领域十大经典算法。十大经典算法如下1. C4.5 / 决策树算法的一种2. K-Means/K-均值算法3. 支持向量机4. Apriori5. 新兴市场6. PageRank7. AdaBoost8. kNN/K-邻近算法9. 朴素...

    数据挖掘中十大经典算法

    数据挖掘十大经典机器学习算法,国际权威的学术组织 the IEEE International Conference on Data Mining (ICDM) 2006 年 12 月评选出了数据挖掘领域的十大经典算法: C4.5, k-Means, SVM, Apriori, EM, PageRank, ...

    盘点数据挖掘领域十大经典算法.docx

    这些经典算法在数据挖掘领域具有广泛的应用,例如在市场分析、客户细分、预测模型、推荐系统、文本分类等场景中都有出色的表现。掌握这些算法能够帮助数据科学家和分析师更好地理解和解决实际问题,提升数据分析的...

    用python实现SVMAdaBoostC4.5CARTNaïveBayes等数据挖掘领域十大经典算法_Python_下.zip

    在数据挖掘领域,掌握经典算法是至关重要的。Python作为一门强大的编程语言,因其简洁的语法和丰富的库支持,成为实现这些算法的首选工具。在这个压缩包中,包含了SVM(支持向量机)、AdaBoost、C4.5决策树、CART...

    数据挖掘领域的十大经典算法原理及应用.docx

    数据挖掘领域的十大经典算法在信息技术和互联网行业中具有广泛的应用,这些算法通过处理和解析大量数据,帮助企业和研究者发现潜在的模式、趋势和关联。以下是这些算法的详细说明: 1. **C4.5**:C4.5是ID3算法的...

    数据挖掘领域十大算法代码实现idea.rar

    数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域十大算法代码实现idea.rar 数据挖掘领域...

    数据挖掘领域十大算法代码实现CART.rar

    此外,压缩包中提到的"数据挖掘领域十大算法"可能包括其他经典算法,如ID3、C4.5、随机森林、支持向量机、K近邻、神经网络、Adaboost、GBDT(梯度提升决策树)、贝叶斯网络和PCA(主成分分析)。这些算法各有特色,...

    10大经典算法-数据挖掘

    ### 数据挖掘领域十大经典算法解析 #### 一、引言 数据挖掘作为计算机科学的一个重要分支,致力于从海量数据中提取有价值的信息与知识。随着大数据时代的到来,数据挖掘技术的应用越来越广泛,对于算法的选择和...

    数据挖掘十大经典算法总结

    十大经典数据挖掘算法由IEEE International Conference on Data Mining (ICDM)在2006年评选出,其中包括: 1. **C4.5**:这是一种决策树算法,是对ID3算法的改进。C4.5使用信息增益率代替信息增益来选择最佳划分...

    数据挖掘领域十大算法代码实现C4.5.rar

    本压缩包"数据挖掘领域十大算法代码实现C4.5.rar"包含了对C4.5决策树算法的Python实现,这是一种广泛应用的分类算法,尤其适合于处理离散型和连续型特征的数据集。 C4.5算法是Quinlan在ID3算法基础上发展起来的,...

    数据挖掘领域十大算法代码实现PageRank.rar

    《数据挖掘领域十大算法及其PageRank代码实现》 在数据挖掘和人工智能的世界中,算法扮演着至关重要的角色。PageRank是Google创始人拉里·佩奇发明的一种网页排名算法,它在互联网搜索引擎优化(SEO)和链接分析中...

    效率高低有方法 数据挖掘十大经典算法 中文版

    国际权威的学术组织评选出了数据挖掘领域的十大经典算法:C4.5, k-...不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

    数据挖掘经典算法综述

    本文将详细介绍数据挖掘领域的十大经典算法,涵盖分类、聚类、关联规则等多个方面。 #### 二、经典算法概述 ##### 1.1 C4.5算法 **简介** C4.5算法是一种基于决策树的分类算法,由Ross Quinlan在1993年提出。它...

    数据挖掘领域十大算法代码实现.zip

    数据挖掘领域十大算法代码实现数据挖掘十大算法大家好!该仓库主要包含数据挖掘中十大算法的实现源代码。大多数演示将使用python作为编程语言。如果您对这项工作感兴趣,请加入我:)。如有任何问题或建议,请发邮件至...

Global site tag (gtag.js) - Google Analytics