首先介绍一下什么是Compare And Swap(CAS)?简单的说就是比较并交换。
CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在 CAS 指令之前返回该位置的值。CAS 有效地说明了“我认为位置 V 应该包含值 A;如果包含该值,则将 B 放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。” Java并发包(java.util.concurrent)中大量使用了CAS操作,涉及到并发的地方都调用了sun.misc.Unsafe类方法进行CAS操作。
在看一下volatile, Volatile修饰的成员变量在每次被线程访问时,都强迫从共享内存中重读该成员变量的值。而且,当成员变量发生变化时,强迫线程将变化值回写到共享内存。这样在任何时刻,两个不同的线程总是看到某个成员变量的值是相同的,更简单一点理解就是volatile修饰的变量值发生变化时对于另外的线程是可见的。
如何正确使用volatile可以参考下面这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jtp06197.html Java 理论与实践: 正确使用 Volatile 变量
下面来看看java中具体的CAS操作类sun.misc.Unsafe。Unsafe类提供了硬件级别的原子操作,Java无法直接访问到操作系统底层(如系统硬件等),为此Java使用native方法来扩展Java程序的功能。具体实现使用c++,详见文件sun.misc.natUnsafe.cc();sun.misc包的源代码可以在这里找到:
http://www.oschina.net/code/explore/gcc-4.5.2/libjava/sun/misc
//下面是sun.misc.Unsafe.java类源码及解析:(英文 ,后附另一个版本 部分)
package sun.misc;
import java.lang.reflect.Field;
/***
* This class should provide access to low-level operations and its
* use should be limited to trusted code. Fields can be accessed using
* memory addresses, with undefined behaviour occurring if invalid memory
* addresses are given.
* 这个类提供了一个更底层的操作并且应该在受信任的代码中使用。可以通过内存地址
* 存取fields,如果给出的内存地址是无效的那么会有一个不确定的运行表现。
*
* @author Tom Tromey (tromey@redhat.com)
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
*/
public class Unsafe
{
// Singleton class.
private static Unsafe unsafe = new Unsafe();
/***
* Private default constructor to prevent creation of an arbitrary
* number of instances.
* 使用私有默认构造器防止创建多个实例
*/
private Unsafe()
{
}
/***
* Retrieve the singleton instance of <code>Unsafe</code>. The calling
* method should guard this instance from untrusted code, as it provides
* access to low-level operations such as direct memory access.
* 获取<code>Unsafe</code>的单例,这个方法调用应该防止在不可信的代码中实例,
* 因为unsafe类提供了一个低级别的操作,例如直接内存存取。
*
* @throws SecurityException if a security manager exists and prevents
* access to the system properties.
* 如果安全管理器不存在或者禁止访问系统属性
*/
public static Unsafe getUnsafe()
{
SecurityManager sm = System.getSecurityManager();
if (sm != null)
sm.checkPropertiesAccess();
return unsafe;
}
/***
* Returns the memory address offset of the given static field.
* The offset is merely used as a means to access a particular field
* in the other methods of this class. The value is unique to the given
* field and the same value should be returned on each subsequent call.
* 返回指定静态field的内存地址偏移量,在这个类的其他方法中这个值只是被用作一个访问
* 特定field的一个方式。这个值对于 给定的field是唯一的,并且后续对该方法的调用都应该
* 返回相同的值。
*
* @param field the field whose offset should be returned.
* 需要返回偏移量的field
* @return the offset of the given field.
* 指定field的偏移量
*/
public native long objectFieldOffset(Field field);
/***
* Compares the value of the integer field at the specified offset
* in the supplied object with the given expected value, and updates
* it if they match. The operation of this method should be atomic,
* thus providing an uninterruptible way of updating an integer field.
* 在obj的offset位置比较integer field和期望的值,如果相同则更新。这个方法
* 的操作应该是原子的,因此提供了一种不可中断的方式更新integer field。
*
* @param obj the object containing the field to modify.
* 包含要修改field的对象
* @param offset the offset of the integer field within <code>obj</code>.
* <code>obj</code>中整型field的偏移量
* @param expect the expected value of the field.
* 希望field中存在的值
* @param update the new value of the field if it equals <code>expect</code>.
* 如果期望值expect与field的当前值相同,设置filed的值为这个新值
* @return true if the field was changed.
* 如果field的值被更改
*/
public native boolean compareAndSwapInt(Object obj, long offset,
int expect, int update);
/***
* Compares the value of the long field at the specified offset
* in the supplied object with the given expected value, and updates
* it if they match. The operation of this method should be atomic,
* thus providing an uninterruptible way of updating a long field.
* 在obj的offset位置比较long field和期望的值,如果相同则更新。这个方法
* 的操作应该是原子的,因此提供了一种不可中断的方式更新long field。
*
* @param obj the object containing the field to modify.
* 包含要修改field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @param expect the expected value of the field.
* 希望field中存在的值
* @param update the new value of the field if it equals <code>expect</code>.
* 如果期望值expect与field的当前值相同,设置filed的值为这个新值
* @return true if the field was changed.
* 如果field的值被更改
*/
public native boolean compareAndSwapLong(Object obj, long offset,
long expect, long update);
/***
* Compares the value of the object field at the specified offset
* in the supplied object with the given expected value, and updates
* it if they match. The operation of this method should be atomic,
* thus providing an uninterruptible way of updating an object field.
* 在obj的offset位置比较object field和期望的值,如果相同则更新。这个方法
* 的操作应该是原子的,因此提供了一种不可中断的方式更新object field。
*
* @param obj the object containing the field to modify.
* 包含要修改field的对象
* @param offset the offset of the object field within <code>obj</code>.
* <code>obj</code>中object型field的偏移量
* @param expect the expected value of the field.
* 希望field中存在的值
* @param update the new value of the field if it equals <code>expect</code>.
* 如果期望值expect与field的当前值相同,设置filed的值为这个新值
* @return true if the field was changed.
* 如果field的值被更改
*/
public native boolean compareAndSwapObject(Object obj, long offset,
Object expect, Object update);
/***
* Sets the value of the integer field at the specified offset in the
* supplied object to the given value. This is an ordered or lazy
* version of <code>putIntVolatile(Object,long,int)</code>, which
* doesn't guarantee the immediate visibility of the change to other
* threads. It is only really useful where the integer field is
* <code>volatile</code>, and is thus expected to change unexpectedly.
* 设置obj对象中offset偏移地址对应的整型field的值为指定值。这是一个有序或者
* 有延迟的<code>putIntVolatile</cdoe>方法,并且不保证值的改变被其他线程立
* 即看到。只有在field被<code>volatile</code>修饰并且期望被意外修改的时候
* 使用才有用。
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the integer field within <code>obj</code>.
* <code>obj</code>中整型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putIntVolatile(Object,long,int)
*/
public native void putOrderedInt(Object obj, long offset, int value);
/***
* Sets the value of the long field at the specified offset in the
* supplied object to the given value. This is an ordered or lazy
* version of <code>putLongVolatile(Object,long,long)</code>, which
* doesn't guarantee the immediate visibility of the change to other
* threads. It is only really useful where the long field is
* <code>volatile</code>, and is thus expected to change unexpectedly.
* 设置obj对象中offset偏移地址对应的long型field的值为指定值。这是一个有序或者
* 有延迟的<code>putLongVolatile</cdoe>方法,并且不保证值的改变被其他线程立
* 即看到。只有在field被<code>volatile</code>修饰并且期望被意外修改的时候
* 使用才有用。
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putLongVolatile(Object,long,long)
*/
public native void putOrderedLong(Object obj, long offset, long value);
/***
* Sets the value of the object field at the specified offset in the
* supplied object to the given value. This is an ordered or lazy
* version of <code>putObjectVolatile(Object,long,Object)</code>, which
* doesn't guarantee the immediate visibility of the change to other
* threads. It is only really useful where the object field is
* <code>volatile</code>, and is thus expected to change unexpectedly.
* 设置obj对象中offset偏移地址对应的object型field的值为指定值。这是一个有序或者
* 有延迟的<code>putObjectVolatile</cdoe>方法,并且不保证值的改变被其他线程立
* 即看到。只有在field被<code>volatile</code>修饰并且期望被意外修改的时候
* 使用才有用。
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the object field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
*/
public native void putOrderedObject(Object obj, long offset, Object value);
/***
* Sets the value of the integer field at the specified offset in the
* supplied object to the given value, with volatile store semantics.
* 设置obj对象中offset偏移地址对应的整型field的值为指定值。支持volatile store语义
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the integer field within <code>obj</code>.
* <code>obj</code>中整型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
*/
public native void putIntVolatile(Object obj, long offset, int value);
/***
* Retrieves the value of the integer field at the specified offset in the
* supplied object with volatile load semantics.
* 获取obj对象中offset偏移地址对应的整型field的值,支持volatile load语义。
*
* @param obj the object containing the field to read.
* 包含需要去读取的field的对象
* @param offset the offset of the integer field within <code>obj</code>.
* <code>obj</code>中整型field的偏移量
*/
public native int getIntVolatile(Object obj, long offset);
/***
* Sets the value of the long field at the specified offset in the
* supplied object to the given value, with volatile store semantics.
* 设置obj对象中offset偏移地址对应的long型field的值为指定值。支持volatile store语义
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putLong(Object,long,long)
*/
public native void putLongVolatile(Object obj, long offset, long value);
/***
* Sets the value of the long field at the specified offset in the
* supplied object to the given value.
* 设置obj对象中offset偏移地址对应的long型field的值为指定值。
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putLongVolatile(Object,long,long)
*/
public native void putLong(Object obj, long offset, long value);
/***
* Retrieves the value of the long field at the specified offset in the
* supplied object with volatile load semantics.
* 获取obj对象中offset偏移地址对应的long型field的值,支持volatile load语义。
*
* @param obj the object containing the field to read.
* 包含需要去读取的field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @see #getLong(Object,long)
*/
public native long getLongVolatile(Object obj, long offset);
/***
* Retrieves the value of the long field at the specified offset in the
* supplied object.
* 获取obj对象中offset偏移地址对应的long型field的值
*
* @param obj the object containing the field to read.
* 包含需要去读取的field的对象
* @param offset the offset of the long field within <code>obj</code>.
* <code>obj</code>中long型field的偏移量
* @see #getLongVolatile(Object,long)
*/
public native long getLong(Object obj, long offset);
/***
* Sets the value of the object field at the specified offset in the
* supplied object to the given value, with volatile store semantics.
* 设置obj对象中offset偏移地址对应的object型field的值为指定值。支持volatile store语义
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the object field within <code>obj</code>.
* <code>obj</code>中object型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putObject(Object,long,Object)
*/
public native void putObjectVolatile(Object obj, long offset, Object value);
/***
* Sets the value of the object field at the specified offset in the
* supplied object to the given value.
* 设置obj对象中offset偏移地址对应的object型field的值为指定值。
*
* @param obj the object containing the field to modify.
* 包含需要修改field的对象
* @param offset the offset of the object field within <code>obj</code>.
* <code>obj</code>中object型field的偏移量
* @param value the new value of the field.
* field将被设置的新值
* @see #putObjectVolatile(Object,long,Object)
*/
public native void putObject(Object obj, long offset, Object value);
/***
* Retrieves the value of the object field at the specified offset in the
* supplied object with volatile load semantics.
* 获取obj对象中offset偏移地址对应的object型field的值,支持volatile load语义。
*
* @param obj the object containing the field to read.
* 包含需要去读取的field的对象
* @param offset the offset of the object field within <code>obj</code>.
* <code>obj</code>中object型field的偏移量
*/
public native Object getObjectVolatile(Object obj, long offset);
/***
* Returns the offset of the first element for a given array class.
* To access elements of the array class, this value may be used along with
* with that returned by
* <a href="#arrayIndexScale"><code>arrayIndexScale</code></a>,
* if non-zero.
* 获取给定数组中第一个元素的偏移地址。
* 为了存取数组中的元素,这个偏移地址与<a href="#arrayIndexScale"><code>arrayIndexScale
* </code></a>方法的非0返回值一起被使用。
* @param arrayClass the class for which the first element's address should
* be obtained.
* 第一个元素地址被获取的class
* @return the offset of the first element of the array class.
* 数组第一个元素 的偏移地址
* @see arrayIndexScale(Class)
*/
public native int arrayBaseOffset(Class arrayClass);
/***
* Returns the scale factor used for addressing elements of the supplied
* array class. Where a suitable scale factor can not be returned (e.g.
* for primitive types), zero should be returned. The returned value
* can be used with
* <a href="#arrayBaseOffset"><code>arrayBaseOffset</code></a>
* to access elements of the class.
* 获取用户给定数组寻址的换算因子.一个合适的换算因子不能返回的时候(例如:基本类型),
* 返回0.这个返回值能够与<a href="#arrayBaseOffset"><code>arrayBaseOffset</code>
* </a>一起使用去存取这个数组class中的元素
*
* @param arrayClass the class whose scale factor should be returned.
* @return the scale factor, or zero if not supported for this array class.
*/
public native int arrayIndexScale(Class arrayClass);
/***
* Releases the block on a thread created by
* <a href="#park"><code>park</code></a>. This method can also be used
* to terminate a blockage caused by a prior call to <code>park</code>.
* This operation is unsafe, as the thread must be guaranteed to be
* live. This is true of Java, but not native code.
* 释放被<a href="#park"><code>park</code></a>创建的在一个线程上的阻塞.这个
* 方法也可以被使用来终止一个先前调用<code>park</code>导致的阻塞.
* 这个操作操作时不安全的,因此线程必须保证是活的.这是java代码不是native代码。
* @param thread the thread to unblock.
* 要解除阻塞的线程
*/
public native void unpark(Thread thread);
/***
* Blocks the thread until a matching
* <a href="#unpark"><code>unpark</code></a> occurs, the thread is
* interrupted or the optional timeout expires. If an <code>unpark</code>
* call has already occurred, this also counts. A timeout value of zero
* is defined as no timeout. When <code>isAbsolute</code> is
* <code>true</code>, the timeout is in milliseconds relative to the
* epoch. Otherwise, the value is the number of nanoseconds which must
* occur before timeout. This call may also return spuriously (i.e.
* for no apparent reason).
* 阻塞一个线程直到<a href="#unpark"><code>unpark</code></a>出现、线程
* 被中断或者timeout时间到期。如果一个<code>unpark</code>调用已经出现了,
* 这里只计数。timeout为0表示永不过期.当<code>isAbsolute</code>为true时,
* timeout是相对于新纪元之后的毫秒。否则这个值就是超时前的纳秒数。这个方法执行时
* 也可能不合理地返回(没有具体原因)
*
* @param isAbsolute true if the timeout is specified in milliseconds from
* the epoch.
* 如果为true timeout的值是一个相对于新纪元之后的毫秒数
* @param time either the number of nanoseconds to wait, or a time in
* milliseconds from the epoch to wait for.
* 可以是一个要等待的纳秒数,或者是一个相对于新纪元之后的毫秒数直到
* 到达这个时间点
*/
public native void park(boolean isAbsolute, long time);
}
//下面是sun.misc.natUnsafe.cc源码
#include <gcj/cni.h>
#include <gcj/field.h>
#include <gcj/javaprims.h>
#include <jvm.h>
#include <sun/misc/Unsafe.h>
#include <java/lang/System.h>
#include <java/lang/InterruptedException.h>
#include <java/lang/Thread.h>
#include <java/lang/Long.h>
#include "sysdep/locks.h"
// Use a spinlock for multi-word accesses
class spinlock
{
static volatile obj_addr_t lock;
public:
spinlock ()
{
while (! compare_and_swap (&lock, 0, 1))
_Jv_ThreadYield ();
}
~spinlock ()
{
release_set (&lock, 0);
}
};
// This is a single lock that is used for all synchronized accesses if
// the compiler can't generate inline compare-and-swap operations. In
// most cases it'll never be used, but the i386 needs it for 64-bit
// locked accesses and so does PPC32. It's worth building libgcj with
// target=i486 (or above) to get the inlines.
volatile obj_addr_t spinlock::lock;
static inline bool
compareAndSwap (volatile jint *addr, jint old, jint new_val)
{
jboolean result = false;
spinlock lock;
if ((result = (*addr == old)))
*addr = new_val;
return result;
}
static inline bool
compareAndSwap (volatile jlong *addr, jlong old, jlong new_val)
{
jboolean result = false;
spinlock lock;
if ((result = (*addr == old)))
*addr = new_val;
return result;
}
static inline bool
compareAndSwap (volatile jobject *addr, jobject old, jobject new_val)
{
jboolean result = false;
spinlock lock;
if ((result = (*addr == old)))
*addr = new_val;
return result;
}
jlong
sun::misc::Unsafe::objectFieldOffset (::java::lang::reflect::Field *field)
{
_Jv_Field *fld = _Jv_FromReflectedField (field);
// FIXME: what if it is not an instance field?
return fld->getOffset();
}
jint
sun::misc::Unsafe::arrayBaseOffset (jclass arrayClass)
{
// FIXME: assert that arrayClass is array.
jclass eltClass = arrayClass->getComponentType();
return (jint)(jlong) _Jv_GetArrayElementFromElementType (NULL, eltClass);
}
jint
sun::misc::Unsafe::arrayIndexScale (jclass arrayClass)
{
// FIXME: assert that arrayClass is array.
jclass eltClass = arrayClass->getComponentType();
if (eltClass->isPrimitive())
return eltClass->size();
return sizeof (void *);
}
// These methods are used when the compiler fails to generate inline
// versions of the compare-and-swap primitives.
jboolean
sun::misc::Unsafe::compareAndSwapInt (jobject obj, jlong offset,
jint expect, jint update)
{
jint *addr = (jint *)((char *)obj + offset);
return compareAndSwap (addr, expect, update);
}
jboolean
sun::misc::Unsafe::compareAndSwapLong (jobject obj, jlong offset,
jlong expect, jlong update)
{
volatile jlong *addr = (jlong*)((char *) obj + offset);
return compareAndSwap (addr, expect, update);
}
jboolean
sun::misc::Unsafe::compareAndSwapObject (jobject obj, jlong offset,
jobject expect, jobject update)
{
jobject *addr = (jobject*)((char *) obj + offset);
return compareAndSwap (addr, expect, update);
}
void
sun::misc::Unsafe::putOrderedInt (jobject obj, jlong offset, jint value)
{
volatile jint *addr = (jint *) ((char *) obj + offset);
*addr = value;
}
void
sun::misc::Unsafe::putOrderedLong (jobject obj, jlong offset, jlong value)
{
volatile jlong *addr = (jlong *) ((char *) obj + offset);
spinlock lock;
*addr = value;
}
void
sun::misc::Unsafe::putOrderedObject (jobject obj, jlong offset, jobject value)
{
volatile jobject *addr = (jobject *) ((char *) obj + offset);
*addr = value;
}
void
sun::misc::Unsafe::putIntVolatile (jobject obj, jlong offset, jint value)
{
write_barrier ();
volatile jint *addr = (jint *) ((char *) obj + offset);
*addr = value;
}
void
sun::misc::Unsafe::putLongVolatile (jobject obj, jlong offset, jlong value)
{
volatile jlong *addr = (jlong *) ((char *) obj + offset);
spinlock lock;
*addr = value;
}
void
sun::misc::Unsafe::putObjectVolatile (jobject obj, jlong offset, jobject value)
{
write_barrier ();
volatile jobject *addr = (jobject *) ((char *) obj + offset);
*addr = value;
}
#if 0 // FIXME
void
sun::misc::Unsafe::putInt (jobject obj, jlong offset, jint value)
{
jint *addr = (jint *) ((char *) obj + offset);
*addr = value;
}
#endif
void
sun::misc::Unsafe::putLong (jobject obj, jlong offset, jlong value)
{
jlong *addr = (jlong *) ((char *) obj + offset);
spinlock lock;
*addr = value;
}
void
sun::misc::Unsafe::putObject (jobject obj, jlong offset, jobject value)
{
jobject *addr = (jobject *) ((char *) obj + offset);
*addr = value;
}
jint
sun::misc::Unsafe::getIntVolatile (jobject obj, jlong offset)
{
volatile jint *addr = (jint *) ((char *) obj + offset);
jint result = *addr;
read_barrier ();
return result;
}
jobject
sun::misc::Unsafe::getObjectVolatile (jobject obj, jlong offset)
{
volatile jobject *addr = (jobject *) ((char *) obj + offset);
jobject result = *addr;
read_barrier ();
return result;
}
jlong
sun::misc::Unsafe::getLong (jobject obj, jlong offset)
{
jlong *addr = (jlong *) ((char *) obj + offset);
spinlock lock;
return *addr;
}
jlong
sun::misc::Unsafe::getLongVolatile (jobject obj, jlong offset)
{
volatile jlong *addr = (jlong *) ((char *) obj + offset);
spinlock lock;
return *addr;
}
void
sun::misc::Unsafe::unpark (::java::lang::Thread *thread)
{
natThread *nt = (natThread *) thread->data;
nt->park_helper.unpark ();
}
void
sun::misc::Unsafe::park (jboolean isAbsolute, jlong time)
{
using namespace ::java::lang;
Thread *thread = Thread::currentThread();
natThread *nt = (natThread *) thread->data;
nt->park_helper.park (isAbsolute, time);
}
这是一个非常强大的类,提供了硬件级别的原子操作。
以下是我通过阅读其他一些已经开源的JDK源码,通过它们对该类的调,总结出来的API,如有错误请指正。
本文版权归“乱七八糟的代码(blog.csdn.net/alifel)”所有,如需转载请注明出处,否则必追究其版权问题!
- /**
- *比较并更新对象的某一个整数类型的域
- *@param obj 被操作的对象
- *@param fieldoffset 被操作的域在对象中的偏移量
- *@param expect 域的期望值
- *@param update 域的更新值
- */
- boolean compareAndSwapInt(Object obj,long fieldoffset, int expect, int update);
- /**
- *比较并更新对象的某一个对象类型的域
- *@param obj 被操作的对象
- *@param fieldoffset 被操作的域在对象中的偏移量
- *@param expect 域的期望值
- *@param update 域的更新值
- */
- boolean compareAndSwapObject(Object obj,long Fieldoffset, Object expect, Object update);
- /**
- *获得对象某个域的偏移量
- *@param field 要获得偏移量的域
- */
- long objectFieldOffset (Field field);
- /**
- *使当前线程在指定的等待时间之前一直等待
- *@param flag 等待时间类型 true代表绝对时间(用相对于历元
- *(Epoch) 的毫秒数值表示),false代表相对时间
- *@param time 等待的时间,单位毫秒
- */
- void park(boolean flag, long time);
- /**
- *取消指定线程的等待
- *@param thread 被取消等待的线程
- */
- void unpark(Thread thread)
- /**
- *通过偏移量,获取某个对象Object类型的域
- *@param obj 被操作的对象
- *@param fieldoffset 偏移量
- */
- Object getObject(Object obj,long fieldoffset);
- /**
- *通过偏移量,获取某个对象整数类型的域
- *@param obj 被操作的对象
- *@param fieldoffset 偏移量
- */
- int getInt(Object obj,long fieldoffset);
相关推荐
JAVA CAS(Compare And Swap)是一种原子操作,用于在多线程环境中实现同步机制。CAS 通过将内存值 V、旧的预期值 A 和要修改的新值 B 进行比较,如果预期值 A 和内存值 V 相同时,将内存值 V 修改为 B,否则什么都...
但在并发编程中,Unsafe类为java.util.concurrent包里的类提供了底层支持,例如通过提供绕过JVM直接修改内存的能力和使用硬件CPU指令实现CAS(Compare-And-Swap)原子操作。 Unsafe类涉及并发编程和内存操作的底层...
在Java并发编程中,CAS(Compare and Swap)是一种无锁算法,用于在多线程环境中实现对共享变量的原子性更新。相比于传统的锁机制,如`synchronized`和`Lock`,CAS具有更低的开销,因为它避免了线程阻塞。本文将深入...
2. **CAS(Compare and Swap)操作**:在并发编程中,`Unsafe`提供了原子性的CAS操作,通过内存偏移地址修改变量值。例如,`SynchronousQueue`中的`TransferStack`使用CAS更新栈顶节点。 ```java private static ...
在Java中,CAS操作主要通过`sun.misc.Unsafe`类来实现,这个类提供了对内存的直接访问,包括一些原生方法,它们直接调用操作系统底层的API来完成原子性操作。 CAS操作包含三个参数:内存值V,旧的预期值A以及要修改...
4. CAS(Compare and Swap)操作: CAS是无锁编程中的关键操作,`Unsafe`类提供了CAS操作,如`compareAndSwapInt(Object o, long offset, int expected, int x)`等。CAS尝试将内存位置的值与预期值进行比较,如果...
CAS(Compare and Swap)是一种乐观锁,当冲突发生时才进行重试。在ConcurrentHashMap中,通过sun.misc.Unsafe类提供的底层内存操作来实现CAS,保证并发操作的原子性。 **扩容机制** 当ConcurrentHashMap中的元素...
它们内部利用了硬件级别的原子操作,如CAS(Compare and Swap,比较并交换),能够在不锁定整个对象或数据结构的情况下进行无锁编程。这种机制在高并发场景下能显著提高程序的性能。 - **AtomicInteger**: 提供了...
- CAS在Java中通过`sun.misc.Unsafe`类的原语方法实现,这些方法是native的,直接与硬件交互。 - CAS的缺点包括循环时间长、只能保证单个共享变量的原子操作,以及可能出现ABA问题。 5. **ABA问题**: - 当一个...
此外,`sun.misc.Unsafe`类在ConcurrentHashMap的实现中扮演重要角色,其提供的原子操作方法(如compareAndSwap*)利用CAS算法确保线程安全,这种方法在没有竞争的情况下效率极高,即使发生冲突,重试次数也是有限的...
在遇到冲突时,无锁通过一种称为Compare And Swap (CAS)的技术来确保线程安全。 CAS操作包括三个参数:V(要更新的值)、E(预期的值)和N(新值)。如果内存位置V的当前值等于预期值E,那么更新V的值为N,并返回...
CAS的全称为Compare-And-Swap,它是一条CPU并发原语 它的功能是判断内存某个位置的值是否为预期值,如果是则改为新的值,这个过程是原子的。 CAS并发原语体现在Java语言中就是sun.misc.Unsafe类中的各个方法。 调用...
5. **CAS(Compare and Swap)操作**: CAS是无锁算法的核心,它是一种硬件提供的原子操作。Java的`sun.misc.Unsafe`类提供了对CAS的直接访问,但通常不建议直接使用,而是通过`Atomic`类间接使用。CAS操作会比较...
此外,它采用高效的并发数据结构,如使用CAS(Compare and Swap)自旋锁来确保多线程环境下的正确性。 4. **系统设计** Nogc的设计通常包括内存池、内存分配器以及内存对象管理组件。内存池负责预先分配一大块内存...
`Unsafe` 类提供了原子操作的实现,例如CAS(Compare and Swap)操作,这是一种无锁编程技术,可以在多线程环境中保证操作的原子性,同时避免了锁带来的开销。 CAS操作是基于硬件级别的支持,在多数现代处理器中都...
在Java中,CAS操作是通过sun.misc.Unsafe类的compareAndSwapInt()方法实现的。这个方法是一个本地方法,它最终会调用底层平台相关的C++代码,例如在Windows X86平台上的atomic_windows_x86.inline.hpp中的实现。本地...