`
wbj0110
  • 浏览: 1617589 次
  • 性别: Icon_minigender_1
  • 来自: 上海
文章分类
社区版块
存档分类
最新评论

Spark源码分析之-Storage模块

阅读更多

Storage模块整体架构

Storage模块主要分为两层:

  1. 通信层:storage模块采用的是master-slave结构来实现通信层,master和slave之间传输控制信息、状态信息,这些都是通过通信层来实现的。
  2. 存储层:storage模块需要把数据存储到disk或是memory上面,有可能还需replicate到远端,这都是由存储层来实现和提供相应接口。

而其他模块若要和storage模块进行交互,storage模块提供了统一的操作类BlockManager,外部类与storage模块打交道都需要通过调用BlockManager相应接口来实现。

Storage模块通信层

首先来看一下通信层的UML类图:

communication layer class chart

其次我们来看看各个类在master和slave上所扮演的不同角色:

communication character class chart

对于master和slave,BlockManager的创建有所不同:

  • Master (client driver)

    BlockManagerMaster拥有BlockManagerMasterActoractor和所有BlockManagerSlaveActorref

  • Slave (executor)

    对于slave,BlockManagerMaster则拥有BlockManagerMasterActorref和自身BlockManagerSlaveActoractor

BlockManagerMasterActorrefactor之间进行通信;BlockManagerSlaveActorrefactor之间通信。

actorref:

actorrefAkka中的两个不同的actor reference,分别由actorOfactorFor所创建。actor类似于网络服务中的server端,它保存所有的状态信息,接收client端的请求执行并返回给客户端;ref类似于网络服务中的client端,通过向server端发起请求获取结果。

BlockManager wrap了BlockManagerMaster,通过BlockManagerMaster进行通信。Spark会在client driver和executor端创建各自的BlockManager,通过BlockManager对storage模块进行操作。

BlockManager对象在SparkEnv中被创建,创建的过程如下所示:

  1. def registerOrLookup(name:String, newActor:=>Actor):ActorRef={
  2. if(isDriver){
  3. logInfo("Registering "+ name)
  4. actorSystem.actorOf(Props(newActor), name = name)
  5. }else{
  6. val driverHost:String=System.getProperty("spark.driver.host","localhost")
  7. val driverPort:Int=System.getProperty("spark.driver.port","7077").toInt
  8. Utils.checkHost(driverHost,"Expected hostname")
  9. val url ="akka://spark@%s:%s/user/%s".format(driverHost, driverPort, name)
  10. logInfo("Connecting to "+ name +": "+ url)
  11. actorSystem.actorFor(url)
  12. }
  13. }
  14. val blockManagerMaster =newBlockManagerMaster(registerOrLookup(
  15. "BlockManagerMaster",
  16. newBlockManagerMasterActor(isLocal)))
  17. val blockManager =newBlockManager(executorId, actorSystem, blockManagerMaster, serializer)

可以看到对于client driver和executor,Spark分别创建了BlockManagerMasterActor actorref,并被wrap到BlockManager中。

通信层传递的消息

  • BlockManagerMasterActor

    • executor to client driver

      RegisterBlockManager (executor创建BlockManager以后向client driver发送请求注册自身) HeartBeat UpdateBlockInfo (更新block信息) GetPeers (请求获得其他BlockManager的id) GetLocations (获取block所在的BlockManager的id) GetLocationsMultipleBlockIds (获取一组block所在的BlockManager id)

    • client driver to client driver

      GetLocations (获取block所在的BlockManager的id) GetLocationsMultipleBlockIds (获取一组block所在的BlockManager id) RemoveExecutor (删除所保存的已经死亡的executor上的BlockManager) StopBlockManagerMaster (停止client driver上的BlockManagerMasterActor)

有些消息例如GetLocations在executor端和client driver端都会向actor请求,而其他的消息比如RegisterBlockManager只会由executor端的ref向client driver端的actor发送,于此同时例如RemoveExecutor则只会由client driver端的ref向client driver端的actor发送。

具体消息是从哪里发送,哪里接收和处理请看代码细节,在这里就不再赘述了。

  • BlockManagerSlaveActor

    • client driver to executor

      RemoveBlock (删除block) RemoveRdd (删除RDD)

通信层中涉及许多控制消息和状态消息的传递以及处理,这些细节可以直接查看源码,这里就不在一一罗列。下面就只简单介绍一下exeuctor端的BlockManager是如何启动以及向client driver发送注册请求完成注册。

Register BlockManager

前面已经介绍了BlockManager对象是如何被创建出来的,当BlockManager被创建出来以后需要向client driver注册自己,下面我们来看一下这个流程:

首先BlockManager会调用initialize()初始化自己

  1. privatedef initialize(){
  2. master.registerBlockManager(blockManagerId, maxMemory, slaveActor)
  3. ...
  4. if(!BlockManager.getDisableHeartBeatsForTesting){
  5. heartBeatTask = actorSystem.scheduler.schedule(0.seconds, heartBeatFrequency.milliseconds){
  6. heartBeat()
  7. }
  8. }
  9. }

initialized()函数中首先调用BlockManagerMaster向client driver注册自己,同时设置heartbeat定时器,定时发送heartbeat报文。可以看到在注册自身的时候向client driver传递了自身的slaveActor,client driver收到slaveActor以后会将其与之对应的BlockManagerInfo存储到hash map中,以便后续通过slaveActor向executor发送命令。

BlockManagerMaster会将注册请求包装成RegisterBlockManager报文发送给client driver的BlockManagerMasterActorBlockManagerMasterActor调用register()函数注册BlockManager

  1. privatedefregister(id:BlockManagerId, maxMemSize:Long, slaveActor:ActorRef){
  2. if(id.executorId =="<driver>"&&!isLocal){
  3. // Got a register message from the master node; don't register it
  4. }elseif(!blockManagerInfo.contains(id)){
  5. blockManagerIdByExecutor.get(id.executorId) match {
  6. caseSome(manager)=>
  7. // A block manager of the same executor already exists.
  8. // This should never happen. Let's just quit.
  9. logError("Got two different block manager registrations on "+ id.executorId)
  10. System.exit(1)
  11. caseNone=>
  12. blockManagerIdByExecutor(id.executorId)= id
  13. }
  14. blockManagerInfo(id)=newBlockManagerMasterActor.BlockManagerInfo(
  15. id,System.currentTimeMillis(), maxMemSize, slaveActor)
  16. }
  17. }

需要注意的是在client driver端也会执行上述过程,只是在最后注册的时候如果判断是"<driver>"就不进行任何操作。可以看到对应的BlockManagerInfo对象被创建并保存在hash map中。

Storage模块存储层

在RDD层面上我们了解到RDD是由不同的partition组成的,我们所进行的transformation和action是在partition上面进行的;而在storage模块内部,RDD又被视为由不同的block组成,对于RDD的存取是以block为单位进行的,本质上partition和block是等价的,只是看待的角度不同。在Spark storage模块中中存取数据的最小单位是block,所有的操作都是以block为单位进行的。

首先我们来看一下存储层的UML类图:

storage layer class chart

BlockManager对象被创建的时候会创建出MemoryStoreDiskStore对象用以存取block,同时在initialize()函数中创建BlockManagerWorker对象用以监听远程的block存取请求来进行相应处理。

  1. private[storage] val memoryStore:BlockStore=newMemoryStore(this, maxMemory)
  2. private[storage] val diskStore:DiskStore=
  3. newDiskStore(this,System.getProperty("spark.local.dir",System.getProperty("java.io.tmpdir")))
  4. privatedef initialize(){
  5. ...
  6. BlockManagerWorker.startBlockManagerWorker(this)
  7. ...
  8. }

下面就具体介绍一下对于DiskStoreMemoryStore,block的存取操作是怎样进行的。

DiskStore如何存取block

DiskStore可以配置多个folder,Spark会在不同的folder下面创建Spark文件夹,文件夹的命名方式为(spark-local-yyyyMMddHHmmss-xxxx, xxxx是一个随机数),所有的block都会存储在所创建的folder里面。DiskStore会在对象被创建时调用createLocalDirs()来创建文件夹:

  1. privatedef createLocalDirs():Array[File]={
  2. logDebug("Creating local directories at root dirs '"+ rootDirs +"'")
  3. val dateFormat =newSimpleDateFormat("yyyyMMddHHmmss")
  4. rootDirs.split(",").map { rootDir =>
  5. var foundLocalDir =false
  6. var localDir:File=null
  7. var localDirId:String=null
  8. var tries =0
  9. val rand =newRandom()
  10. while(!foundLocalDir && tries < MAX_DIR_CREATION_ATTEMPTS){
  11. tries +=1
  12. try{
  13. localDirId ="%s-%04x".format(dateFormat.format(newDate), rand.nextInt(65536))
  14. localDir =newFile(rootDir,"spark-local-"+ localDirId)
  15. if(!localDir.exists){
  16. foundLocalDir = localDir.mkdirs()
  17. }
  18. }catch{
  19. case e:Exception=>
  20. logWarning("Attempt "+ tries +" to create local dir "+ localDir +" failed", e)
  21. }
  22. }
  23. if(!foundLocalDir){
  24. logError("Failed "+ MAX_DIR_CREATION_ATTEMPTS +
  25. " attempts to create local dir in "+ rootDir)
  26. System.exit(ExecutorExitCode.DISK_STORE_FAILED_TO_CREATE_DIR)
  27. }
  28. logInfo("Created local directory at "+ localDir)
  29. localDir
  30. }
  31. }

DiskStore里面,每一个block都被存储为一个file,通过计算block id的hash值将block映射到文件中,block id与文件路径的映射关系如下所示:

  1. privatedef getFile(blockId:String):File={
  2. logDebug("Getting file for block "+ blockId)
  3. // Figure out which local directory it hashes to, and which subdirectory in that
  4. val hash =Utils.nonNegativeHash(blockId)
  5. val dirId = hash % localDirs.length
  6. val subDirId =(hash / localDirs.length)% subDirsPerLocalDir
  7. // Create the subdirectory if it doesn't already exist
  8. var subDir = subDirs(dirId)(subDirId)
  9. if(subDir ==null){
  10. subDir = subDirs(dirId).synchronized{
  11. val old = subDirs(dirId)(subDirId)
  12. if(old !=null){
  13. old
  14. }else{
  15. val newDir =newFile(localDirs(dirId),"%02x".format(subDirId))
  16. newDir.mkdir()
  17. subDirs(dirId)(subDirId)= newDir
  18. newDir
  19. }
  20. }
  21. }
  22. newFile(subDir, blockId)
  23. }

根据block id计算出hash值,将hash取模获得dirIdsubDirId,在subDirs中找出相应的subDir,若没有则新建一个subDir,最后以subDir为路径、block id为文件名创建file handler,DiskStore使用此file handler将block写入文件内,代码如下所示:

  1. overridedef putBytes(blockId:String, _bytes:ByteBuffer, level:StorageLevel){
  2. // So that we do not modify the input offsets !
  3. // duplicate does not copy buffer, so inexpensive
  4. val bytes = _bytes.duplicate()
  5. logDebug("Attempting to put block "+ blockId)
  6. val startTime =System.currentTimeMillis
  7. val file = createFile(blockId)
  8. val channel =newRandomAccessFile(file,"rw").getChannel()
  9. while(bytes.remaining >0){
  10. channel.write(bytes)
  11. }
  12. channel.close()
  13. val finishTime =System.currentTimeMillis
  14. logDebug("Block %s stored as %s file on disk in %d ms".format(
  15. blockId,Utils.bytesToString(bytes.limit),(finishTime - startTime)))
  16. }

而获取block则非常简单,找到相应的文件并读取出来即可:

  1. overridedef getBytes(blockId:String):Option[ByteBuffer]={
  2. val file = getFile(blockId)
  3. val bytes = getFileBytes(file)
  4. Some(bytes)
  5. }

因此在DiskStore中存取block首先是要将block id映射成相应的文件路径,接着存取文件就可以了。

MemoryStore如何存取block

相对于DiskStore需要根据block id hash计算出文件路径并将block存放到对应的文件里面,MemoryStore管理block就显得非常简单:MemoryStore内部维护了一个hash map来管理所有的block,以block id为key将block存放到hash map中。

  1. caseclassEntry(value:Any, size:Long, deserialized:Boolean)
  2. private val entries =newLinkedHashMap[String,Entry](32,0.75f,true)

MemoryStore中存放block必须确保内存足够容纳下该block,若内存不足则会将block写到文件中,具体的代码如下所示:

  1. overridedef putBytes(blockId:String, _bytes:ByteBuffer, level:StorageLevel){
  2. // Work on a duplicate - since the original input might be used elsewhere.
  3. val bytes = _bytes.duplicate()
  4. bytes.rewind()
  5. if(level.deserialized){
  6. val values = blockManager.dataDeserialize(blockId, bytes)
  7. val elements =newArrayBuffer[Any]
  8. elements ++= values
  9. val sizeEstimate =SizeEstimator.estimate(elements.asInstanceOf[AnyRef])
  10. tryToPut(blockId, elements, sizeEstimate,true)
  11. }else{
  12. tryToPut(blockId, bytes, bytes.limit,false)
  13. }
  14. }

tryToPut()中,首先调用ensureFreeSpace()确保空闲内存是否足以容纳block,若可以则将该block放入hash map中进行管理;若不足以容纳则通过调用dropFromMemory()将block写入文件。

  1. privatedef tryToPut(blockId:String, value:Any, size:Long, deserialized:Boolean):Boolean={
  2. // TODO: Its possible to optimize the locking by locking entries only when selecting blocks
  3. // to be dropped. Once the to-be-dropped blocks have been selected, and lock on entries has been
  4. // released, it must be ensured that those to-be-dropped blocks are not double counted for
  5. // freeing up more space for another block that needs to be put. Only then the actually dropping
  6. // of blocks (and writing to disk if necessary) can proceed in parallel.
  7. putLock.synchronized{
  8. if(ensureFreeSpace(blockId, size)){
  9. val entry =newEntry(value, size, deserialized)
  10. entries.synchronized{
  11. entries.put(blockId, entry)
  12. currentMemory += size
  13. }
  14. if(deserialized){
  15. logInfo("Block %s stored as values to memory (estimated size %s, free %s)".format(
  16. blockId,Utils.bytesToString(size),Utils.bytesToString(freeMemory)))
  17. }else{
  18. logInfo("Block %s stored as bytes to memory (size %s, free %s)".format(
  19. blockId,Utils.bytesToString(size),Utils.bytesToString(freeMemory)))
  20. }
  21. true
  22. }else{
  23. // Tell the block manager that we couldn't put it in memory so that it can drop it to
  24. // disk if the block allows disk storage.
  25. val data =if(deserialized){
  26. Left(value.asInstanceOf[ArrayBuffer[Any]])
  27. }else{
  28. Right(value.asInstanceOf[ByteBuffer].duplicate())
  29. }
  30. blockManager.dropFromMemory(blockId, data)
  31. false
  32. }
  33. }
  34. }

而从MemoryStore中取得block则非常简单,只需从hash map中取出block id对应的value即可。

  1. overridedef getValues(blockId:String):Option[Iterator[Any]]={
  2. val entry = entries.synchronized{
  3. entries.get(blockId)
  4. }
  5. if(entry ==null){
  6. None
  7. }elseif(entry.deserialized){
  8. Some(entry.value.asInstanceOf[ArrayBuffer[Any]].iterator)
  9. }else{
  10. val buffer = entry.value.asInstanceOf[ByteBuffer].duplicate()// Doesn't actually copy data
  11. Some(blockManager.dataDeserialize(blockId, buffer))
  12. }
  13. }

Put or Get block through BlockManager

上面介绍了DiskStoreMemoryStore对于block的存取操作,那么我们是要直接与它们交互存取数据吗,还是封装了更抽象的接口使我们无需关心底层?

BlockManager为我们提供了put()get()函数,用户可以使用这两个函数对block进行存取而无需关心底层实现。

首先我们来看一下put()函数的实现:

  1. def put(blockId:String, values:ArrayBuffer[Any], level:StorageLevel,
  2. tellMaster:Boolean=true):Long={
  3. ...
  4. // Remember the block's storage level so that we can correctly drop it to disk if it needs
  5. // to be dropped right after it got put into memory. Note, however, that other threads will
  6. // not be able to get() this block until we call markReady on its BlockInfo.
  7. val myInfo ={
  8. val tinfo =newBlockInfo(level, tellMaster)
  9. // Do atomically !
  10. val oldBlockOpt = blockInfo.putIfAbsent(blockId, tinfo)
  11. if(oldBlockOpt.isDefined){
  12. if(oldBlockOpt.get.waitForReady()){
  13. logWarning("Block "+ blockId +" already exists on this machine; not re-adding it")
  14. return oldBlockOpt.get.size
  15. }
  16. // TODO: So the block info exists - but previous attempt to load it (?) failed. What do we do now ? Retry on it ?
  17. oldBlockOpt.get
  18. }else{
  19. tinfo
  20. }
  21. }
  22. val startTimeMs =System.currentTimeMillis
  23. // If we need to replicate the data, we'll want access to the values, but because our
  24. // put will read the whole iterator, there will be no values left. For the case where
  25. // the put serializes data, we'll remember the bytes, above; but for the case where it
  26. // doesn't, such as deserialized storage, let's rely on the put returning an Iterator.
  27. var valuesAfterPut:Iterator[Any]=null
  28. // Ditto for the bytes after the put
  29. var bytesAfterPut:ByteBuffer=null
  30. // Size of the block in bytes (to return to caller)
  31. var size =0L
  32. myInfo.synchronized{
  33. logTrace("Put for block "+ blockId +" took "+Utils.getUsedTimeMs(startTimeMs)
  34. +" to get into synchronized block")
  35. var marked =false
  36. try{
  37. if(level.useMemory){
  38. // Save it just to memory first, even if it also has useDisk set to true; we will later
  39. // drop it to disk if the memory store can't hold it.
  40. val res = memoryStore.putValues(blockId, values, level,true)
  41. size = res.size
  42. res.data match {
  43. caseRight(newBytes)=> bytesAfterPut = newBytes
  44. caseLeft(newIterator)=> valuesAfterPut = newIterator
  45. }
  46. }else{
  47. // Save directly to disk.
  48. // Don't get back the bytes unless we replicate them.
  49. val askForBytes = level.replication >1
  50. val res = diskStore.putValues(blockId, values, level, askForBytes)
  51. size = res.size
  52. res.data match {
  53. caseRight(newBytes)=> bytesAfterPut = newBytes
  54. case _ =>
  55. }
  56. }
  57. // Now that the block is in either the memory or disk store, let other threads read it,
  58. // and tell the master about it.
  59. marked =true
  60. myInfo.markReady(size)
  61. if(tellMaster){
  62. reportBlockStatus(blockId, myInfo)
  63. }
  64. }finally{
  65. // If we failed at putting the block to memory/disk, notify other possible readers
  66. // that it has failed, and then remove it from the block info map.
  67. if(! marked){
  68. // Note that the remove must happen before markFailure otherwise another thread
  69. // could've inserted a new BlockInfo before we remove it.
  70. blockInfo.remove(blockId)
  71. myInfo.markFailure()
  72. logWarning("Putting block "+ blockId +" failed")
  73. }
  74. }
  75. }
  76. logDebug("Put block "+ blockId +" locally took "+Utils.getUsedTimeMs(startTimeMs))
  77. // Replicate block if required
  78. if(level.replication >1){
  79. val remoteStartTime =System.currentTimeMillis
  80. // Serialize the block if not already done
  81. if(bytesAfterPut ==null){
  82. if(valuesAfterPut ==null){
  83. thrownewSparkException(
  84. "Underlying put returned neither an Iterator nor bytes! This shouldn't happen.")
  85. }
  86. bytesAfterPut = dataSerialize(blockId, valuesAfterPut)
  87. }
  88. replicate(blockId, bytesAfterPut, level)
  89. logDebug("Put block "+ blockId +" remotely took "+Utils.getUsedTimeMs(remoteStartTime))
  90. }
  91. BlockManager.dispose(bytesAfterPut)
  92. return size
  93. }

对于put()操作,主要分为以下3个步骤:

  1. 为block创建BlockInfo结构体存储block相关信息,同时将其加锁使其不能被访问。
  2. 根据block的storage level将block存储到memory或是disk上,同时解锁标识该block已经ready,可被访问。
  3. 根据block的replication数决定是否将该block replicate到远端。

接着我们来看一下get()函数的实现:

  1. defget(blockId:String):Option[Iterator[Any]]={
  2. val local= getLocal(blockId)
  3. if(local.isDefined){
  4. logInfo("Found block %s locally".format(blockId))
  5. returnlocal
  6. }
  7. val remote = getRemote(blockId)
  8. if(remote.isDefined){
  9. logInfo("Found block %s remotely".format(blockId))
  10. return remote
  11. }
  12. None
  13. }

get()首先会从local的BlockManager中查找block,如果找到则返回相应的block,若local没有找到该block,则发起请求从其他的executor上的BlockManager中查找block。在通常情况下Spark任务的分配是根据block的分布决定的,任务往往会被分配到拥有block的节点上,因此getLocal()就能找到所需的block;但是在资源有限的情况下,Spark会将任务调度到与block不同的节点上,这样就必须通过getRemote()来获得block。

我们先来看一下getLocal():

  1. def getLocal(blockId:String):Option[Iterator[Any]]={
  2. logDebug("Getting local block "+ blockId)
  3. val info = blockInfo.get(blockId).orNull
  4. if(info !=null){
  5. info.synchronized{
  6. // In the another thread is writing the block, wait for it to become ready.
  7. if(!info.waitForReady()){
  8. // If we get here, the block write failed.
  9. logWarning("Block "+ blockId +" was marked as failure.")
  10. returnNone
  11. }
  12. val level = info.level
  13. logDebug("Level for block "+ blockId +" is "+ level)
  14. // Look for the block in memory
  15. if(level.useMemory){
  16. logDebug("Getting block "+ blockId +" from memory")
  17. memoryStore.getValues(blockId) match {
  18. caseSome(iterator)=>
  19. returnSome(iterator)
  20. caseNone=>
  21. logDebug("Block "+ blockId +" not found in memory")
  22. }
  23. }
  24. // Look for block on disk, potentially loading it back into memory if required
  25. if(level.useDisk){
  26. logDebug("Getting block "+ blockId +" from disk")
  27. if(level.useMemory && level.deserialized){
  28. diskStore.getValues(blockId) match {
  29. caseSome(iterator)=>
  30. // Put the block back in memory before returning it
  31. // TODO: Consider creating a putValues that also takes in a iterator ?
  32. val elements =newArrayBuffer[Any]
  33. elements ++= iterator
  34. memoryStore.putValues(blockId, elements, level,true).data match {
  35. caseLeft(iterator2)=>
  36. returnSome(iterator2)
  37. case _ =>
  38. thrownewException("Memory store did not return back an iterator")
  39. }
  40. caseNone=>
  41. thrownewException("Block "+ blockId +" not found on disk, though it should be")
  42. }
  43. }elseif(level.useMemory &&!level.deserialized){
  44. // Read it as a byte buffer into memory first, then return it
  45. diskStore.getBytes(blockId) match {
  46. caseSome(bytes)=>
  47. // Put a copy of the block back in memory before returning it. Note that we can't
  48. // put the ByteBuffer returned by the disk store as that's a memory-mapped file.
  49. // The use of rewind assumes this.
  50. assert(0== bytes.position())
  51. val copyForMemory =ByteBuffer.allocate(bytes.limit)
  52. copyForMemory.put(bytes)
  53. memoryStore.putBytes(blockId, copyForMemory, level)
  54. bytes.rewind()
  55. returnSome(dataDeserialize(blockId, bytes))
  56. caseNone=>
  57. thrownewException("Block "+ blockId +" not found on disk, though it should be")
  58. }
  59. }else{
  60. diskStore.getValues(blockId) match {
  61. caseSome(iterator)=>
  62. returnSome(iterator)
  63. caseNone=>
  64. thrownewException("Block "+ blockId +" not found on disk, though it should be")
  65. }
  66. }
  67. }
  68. }
  69. }else{
  70. logDebug("Block "+ blockId +" not registered locally")
  71. }
  72. returnNone
  73. }

getLocal()首先会根据block id获得相应的BlockInfo并从中取出该block的storage level,根据storage level的不同getLocal()又进入以下不同分支:

  1. level.useMemory == true:从memory中取出block并返回,若没有取到则进入分支2。
  2. level.useDisk == true:
    • level.useMemory == true: 将block从disk中读出并写入内存以便下次使用时直接从内存中获得,同时返回该block。
    • level.useMemory == false: 将block从disk中读出并返回
  3. level.useDisk == false: 没有在本地找到block,返回None。

接下来我们来看一下getRemote()

  1. def getRemote(blockId:String):Option[Iterator[Any]]={
  2. if(blockId ==null){
  3. thrownewIllegalArgumentException("Block Id is null")
  4. }
  5. logDebug("Getting remote block "+ blockId)
  6. // Get locations of block
  7. val locations = master.getLocations(blockId)
  8. // Get block from remote locations
  9. for(loc <- locations){
  10. logDebug("Getting remote block "+ blockId +" from "+ loc)
  11. val data =BlockManagerWorker.syncGetBlock(
  12. GetBlock(blockId),ConnectionManagerId(loc.host, loc.port))
  13. if(data !=null){
  14. returnSome(dataDeserialize(blockId, data))
  15. }
  16. logDebug("The value of block "+ blockId +" is null")
  17. }
  18. logDebug("Block "+ blockId +" not found")
  19. returnNone
  20. }

getRemote()首先取得该block的所有location信息,然后根据location向远端发送请求获取block,只要有一个远端返回block该函数就返回而不继续发送请求。

至此我们简单介绍了BlockManager类中的get()put()函数,使用这两个函数外部类可以轻易地存取block数据。

Partition如何转化为Block

在storage模块里面所有的操作都是和block相关的,但是在RDD里面所有的运算都是基于partition的,那么partition是如何与block对应上的呢?

RDD计算的核心函数是iterator()函数:

  1. finaldef iterator(split:Partition, context:TaskContext):Iterator[T]={
  2. if(storageLevel !=StorageLevel.NONE){
  3. SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
  4. }else{
  5. computeOrReadCheckpoint(split, context)
  6. }
  7. }

如果当前RDD的storage level不是NONE的话,表示该RDD在BlockManager中有存储,那么调用CacheManager中的getOrCompute()函数计算RDD,在这个函数中partition和block发生了关系:

首先根据RDD id和partition index构造出block id (rdd_xx_xx),接着从BlockManager中取出相应的block。

  • 如果该block存在,表示此RDD在之前已经被计算过和存储在BlockManager中,因此取出即可,无需再重新计算。
  • 如果该block不存在则需要调用RDD的computeOrReadCheckpoint()函数计算出新的block,并将其存储到BlockManager中。

需要注意的是block的计算和存储是阻塞的,若另一线程也需要用到此block则需等到该线程block的loading结束。

  1. def getOrCompute[T](rdd: RDD[T], split:Partition, context:TaskContext, storageLevel:StorageLevel)
  2. :Iterator[T]={
  3. val key ="rdd_%d_%d".format(rdd.id, split.index)
  4. logDebug("Looking for partition "+ key)
  5. blockManager.get(key) match {
  6. caseSome(values)=>
  7. // Partition is already materialized, so just return its values
  8. return values.asInstanceOf[Iterator[T]]
  9. caseNone=>
  10. // Mark the split as loading (unless someone else marks it first)
  11. loading.synchronized{
  12. if(loading.contains(key)){
  13. logInfo("Another thread is loading %s, waiting for it to finish...".format (key))
  14. while(loading.contains(key)){
  15. try{loading.wait()}catch{case _ :Throwable=>}
  16. }
  17. logInfo("Finished waiting for %s".format(key))
  18. // See whether someone else has successfully loaded it. The main way this would fail
  19. // is for the RDD-level cache eviction policy if someone else has loaded the same RDD
  20. // partition but we didn't want to make space for it. However, that case is unlikely
  21. // because it's unlikely that two threads would work on the same RDD partition. One
  22. // downside of the current code is that threads wait serially if this does happen.
  23. blockManager.get(key) match {
  24. caseSome(values)=>
  25. return values.asInstanceOf[Iterator[T]]
  26. caseNone=>
  27. logInfo("Whoever was loading %s failed; we'll try it ourselves".format (key))
  28. loading.add(key)
  29. }
  30. }else{
  31. loading.add(key)
  32. }
  33. }
  34. try{
  35. // If we got here, we have to load the split
  36. logInfo("Partition %s not found, computing it".format(key))
  37. val computedValues = rdd.computeOrReadCheckpoint(split, context)
  38. // Persist the result, so long as the task is not running locally
  39. if(context.runningLocally){return computedValues }
  40. val elements =newArrayBuffer[Any]
  41. elements ++= computedValues
  42. blockManager.put(key, elements, storageLevel,true)
  43. return elements.iterator.asInstanceOf[Iterator[T]]
  44. }finally{
  45. loading.synchronized{
  46. loading.remove(key)
  47. loading.notifyAll()
  48. }
  49. }
  50. }
  51. }

这样RDD的transformation、action就和block数据建立了联系,虽然抽象上我们的操作是在partition层面上进行的,但是partition最终还是被映射成为block,因此实际上我们的所有操作都是对block的处理和存取。

 

http://jerryshao.me/architecture/2013/10/08/spark-storage-module-analysis/

分享到:
评论

相关推荐

    Spark-2.4.5官网下载源码包

    7. `build/`:构建脚本和配置文件,如`build.gradle`,用于编译Spark源码。 8. `README.md`:项目简介和指南,帮助用户快速了解Spark和如何使用源码。 9. `LICENSE`:Spark的开源许可证,遵循Apache 2.0协议。 10. `...

    spark源码分析

    Spark源码分析主要涉及以下几个关键模块: 1. DAGScheduler:负责构建DAG,并将其拆分为任务阶段。 2. TaskScheduler:调度和分配任务到工作节点。 3. Executor:执行实际任务,管理内存和线程。 4. ShuffleManager...

    深入理解Spark 核心思想与源码分析

    二、Spark源码分析 1. **Job与Task**:Job代表用户提交的一个完整任务,由一系列DAGStage组成。Task是实际在工作节点(Executor)上执行的最小单元,每个Task负责处理一部分数据。 2. **Driver与Executor**:...

    spark源码结构,源码说明

    Spark源码结构解析 Spark作为一个流行的分布式计算框架,其源码结构复杂且深奥,但理解它对于深入学习和优化Spark应用至关重要。源码结构主要分为几个关键部分,包括核心库、模块化组件以及插件机制等。以下是对...

    Spark2.6.3源码

    源码分析对于深入理解Spark的工作原理和进行二次开发至关重要。 首先,Java目录是Spark源码的核心部分,它包含了Spark的大部分核心组件和功能的实现。以下是一些主要的子目录及其相关的知识点: 1. **core**:这是...

    spark最新源码以及二次开发教程

    1. **环境搭建**:安装Openfire服务器,获取Spark源码,设置开发环境(如IDE、构建工具等)。 2. **代码阅读**:理解Spark源码的组织结构,重点关注与目标功能相关的部分。 3. **设计与实现**:根据需求设计新功能...

    mesos-spark-源码.rar

    通过对Mesos和Spark源码的深入分析,我们可以了解到这两个项目如何高效地处理大规模数据,以及它们在分布式环境中的协同工作方式。这对于开发者来说,无论是为了优化性能,还是为了开发新的分布式应用,都是非常有...

    Spark-dig-and-dig:Dig Spark的源代码-spark source code

    《Spark源码探秘:深度剖析Spark核心机制》 Spark作为一个强大的开源大数据处理框架,以其高效、易用和可扩展性赢得了业界的广泛赞誉。深入理解Spark的源代码,能够帮助我们更好地掌握其工作原理,优化应用性能,...

    Nebula Graph 源码解读系列-Vol.01 Nebula Graph技术概述.docx

    - **查询引擎**:查询引擎是无状态的,主要由语法分析、语义分析、优化器和执行引擎组成,负责处理用户的查询请求。这些组件协同工作,确保高效地执行图查询。 - **存储服务**:存储服务包括Meta Service和Storage...

    spark-2.2:spark-2.2源码阅读

    7. Storage模块 Spark的内存管理和存储策略在2.2版本中得到了优化。源码中可以学习如何配置和控制存储级别,以及如何利用Tachyon或HDFS进行持久化存储。 8. ShuffleService与ExternalBlockStoreService 这两个...

    java7源码-spark-project:火花项目

    在Spark源码中,我们还可以看到如何利用Java的反射和动态代理实现对用户代码的透明封装和优化。例如,Spark的Closure Cleaning机制就是通过反射消除对非序列化变量的依赖,使得任务可以安全地在集群中传递。 标签...

    spark-source-code-learn-note:火花学习笔记-spark source code

    5. Storage模块:管理内存和磁盘存储,包括RDD的缓存策略和持久化级别。 6. ShuffleService:处理Shuffle过程中数据的分发和合并,优化网络传输效率。 四、Spark SQL与DataFrame Spark SQL是Spark处理结构化数据的...

    spark1.0.0源码

    源码中可以深入理解`Storage`模块和`MemoryManager`的工作原理。 9. **容错机制**:Spark通过检查点和血统(lineage)来实现容错,如果某个分区的数据丢失,可以通过重新计算该分区的依赖任务来恢复。源码中可以...

    spark开发丛书

    书中可能涵盖了Spark核心模块,如Scheduler、Executor、Storage和Network的源码解读,以及如何阅读和理解Spark源码的技巧。 这四本书结合在一起,构成了一个从基础到进阶,从理论到实践,从应用到源码全方位的Spark...

    spark安装文档.zip

    2. **获取Spark源码或二进制包**:可以从Apache Spark官方网站下载最新的稳定版本,或者选择从GitHub获取源代码自行编译。 3. **解压Spark**:将下载的`.tar.gz`文件解压到指定目录,例如`/usr/local/`。 4. **...

    3_24课堂发言记录2

    - **源码分析**:深入理解Spark的源码实现,有助于优化和扩展。 - **文档管理**:定期更新文档,记录项目进展和团队协作。 6. **Node.js 知识点**: - **Node.js简介**:Node.js 不是一个JavaScript应用,而是一...

    PyPI 官网下载 | skale.py-4.0.dev7.tar.gz

    解压后,开发者可以通过阅读源码来了解库的具体实现,也可以通过导入并调用相关模块进行测试和开发。例如,你可以使用Python的`setup.py`脚本来安装这个库,或者直接导入源代码进行自定义修改。 skale库的一个关键...

    mT

    这涉及到数据存储技术(如分布式文件系统)、数据处理技术(如Hadoop MapReduce或Spark)、以及数据分析工具(如SQL数据库、NoSQL数据库、数据挖掘软件等)。 在文件名列表中,"mT-main"可能是某个项目、程序或服务...

    TikTok

    7. **实时数据分析**:Apache Flink或Spark等大数据处理框架,可以实现实时流数据分析,监控用户行为,优化用户体验。 8. **API设计与交互**:使用Java的RESTful API设计原则,可以构建清晰、可维护的接口,供前端...

Global site tag (gtag.js) - Google Analytics