`
wbj0110
  • 浏览: 1598643 次
  • 性别: Icon_minigender_1
  • 来自: 上海
文章分类
社区版块
存档分类
最新评论

深入分析Volatile的实现原理(转)

阅读更多

引言

在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。

它在某些情况下比synchronized的开销更小,本文将深入分析在硬件层面上Inter处理器是如何实现Volatile的,通过深入分析能帮助我们正确的使用Volatile变量。

 

 

术语

英文单词

 

描述

共享变量

 

在多个线程之间能够被共享的变量被称为共享变量。共享变量包括所有的实例变量,静态变量和数组元素。他们都被存放在堆内存中,Volatile只作用于共享变量。

内存屏障

Memory Barriers

是一组处理器指令,用于实现对内存操作的顺序限制。

缓冲行

Cache line

缓存中可以分配的最小存储单位。处理器填写缓存线时会加载整个缓存线,需要使用多个主内存读周期。

原子操作

Atomic operations

不可中断的一个或一系列操作。

缓存行填充

cache line fill

当处理器识别到从内存中读取操作数是可缓存的,处理器读取整个缓存行到适当的缓存(L1,L2,L3的或所有)

缓存命中

cache hit

如果进行高速缓存行填充操作的内存位置仍然是下次处理器访问的地址时,处理器从缓存中读取操作数,而不是从内存。

写命中

write hit

当处理器将操作数写回到一个内存缓存的区域时,它首先会检查这个缓存的内存地址是否在缓存行中,如果存在一个有效的缓存行,则处理器将这个操作数写回到缓存,而不是写回到内存,这个操作被称为写命中。

写缺失

write misses the cache

一个有效的缓存行被写入到不存在的内存区域。

 

Volatile的官方定义

Java语言规范第三版中对volatile的定义如下: java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁更加方便。如果一个字段被声明成volatile,java线程内存模型确保所有线程看到这个变量的值是一致的。

为什么要使用Volatile

Volatile变量修饰符如果使用恰当的话,它比synchronized的使用和执行成本会更低,因为它不会引起线程上下文的切换和调度。

Volatile的实现原理

那么Volatile是如何来保证可见性的呢?在x86处理器下通过工具获取JIT编译器生成的汇编指令来看看对Volatile进行写操作CPU会做什么事情。

Java代码:

instance = new Singleton();//instance是volatile变量

汇编代码:

0x01a3de1d: movb $0x0,0x1104800(%esi);

0x01a3de24: lock addl $0x0,(%esp);

 

有volatile变量修饰的共享变量进行写操作的时候会多第二行汇编代码,通过查IA-32架构软件开发者手册可知,lock前缀的指令在多核处理器下会引发了两件事情。

  • 将当前处理器缓存行的数据会写回到系统内存。
  • 这个写回内存的操作会引起在其他CPU里缓存了该内存地址的数据无效。

处理器为了提高处理速度,不直接和内存进行通讯,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完之后不知道何时会写到内存,如果对声明了Volatile变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题,所以在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作的时候,会强制重新从系统内存里把数据读到处理器缓存里。

这两件事情在IA-32软件开发者架构手册的第三册的多处理器管理章节(第八章)中有详细阐述。

Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的 LOCK# 信号。在多处理器环境中,LOCK# 信号确保在声言该信号期间,处理器可以独占使用任何共享内存。(因为它会锁住总线,导致其他CPU不能访问总线,不能访问总线就意味着不能访问系统内存),但是在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销比较大。在8.1.4章节有详细说明锁定操作对处理器缓存的影响,对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和最近的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反地,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据

一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处理器使用MESI(修改,独占,共享,无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32 和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。它们使用嗅探技术保证它的内部缓存,系统内存和其他处理器的缓存的数据在总线上保持一致。例如在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处理共享状态,那么正在嗅探的处理器将无效它的缓存行,在下次访问相同内存地址时,强制执行缓存行填充。

Volatile的使用优化

著名的Java并发编程大师Doug lea在JDK7的并发包里新增一个队列集合类LinkedTransferQueue,他在使用Volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。

追加字节能优化性能?这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘。让我们先来看看LinkedTransferQueue这个类,它使用一个内部类类型来定义队列的头队列(Head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量共占60个字节,再加上父类的Value变量,一共64个字节。

/** head of the queue */
private transient final PaddedAtomicReference < QNode > head;

/** tail of the queue */

private transient final PaddedAtomicReference < QNode > tail;


static final class PaddedAtomicReference < T > extends AtomicReference < T > {

    // enough padding for 64bytes with 4byte refs 
    Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;

    PaddedAtomicReference(T r) {

        super(r);

    }

}

public class AtomicReference < V > implements java.io.Serializable {

    private volatile V value;

    //省略其他代码 }

为什么追加64字节能够提高并发编程的效率呢? 因为对于英特尔酷睿i7,酷睿, Atom和NetBurst, Core Solo和Pentium M处理器的L1,L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头尾节点,当一个处理器试图修改头接点时会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作是需要不停修改头接点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头接点和尾节点加载到同一个缓存行,使得头尾节点在修改时不会互相锁定。

那么是不是在使用Volatile变量时都应该追加到64字节呢?不是的。在两种场景下不应该使用这种方式。第一:缓存行非64字节宽的处理器,如P6系列和奔腾处理器,它们的L1和L2高速缓存行是32个字节宽。第二:共享变量不会被频繁的写。因为使用追加字节的方式需要处理器读取更多的字节到高速缓冲区,这本身就会带来一定的性能消耗,共享变量如果不被频繁写的话,锁的几率也非常小,就没必要通过追加字节的方式来避免相互锁定。

分享到:
评论

相关推荐

    深入分析Volatile的实现原理

    本文将深入分析在硬件层面上Inter处理器是如何实现Volatile的,通过深入分析能帮助我们正确的使用Volatile变量。

    聊聊并发(一)深入分析Volatile的实现原理

    本篇文章将深入分析Volatile的实现原理,结合`LinkedTransferQueue`和`TransferQueue`这两个与并发相关的Java源码,探讨其在多线程环境中的应用。 首先,我们需要理解Java内存模型(JMM,Java Memory Model),它是...

    volatile源码分析1

    【volatile源码分析1】 Java中的volatile关键字是一个关键的同步机制,它在多线程编程中扮演着重要的角色。在面试和技术讨论中,volatile经常成为焦点,但其工作原理却常常引发争议。本文将从JVM、C++以及汇编语言...

    synchronized ReentrantLock volatile Atomic 原理分析.docx

    本文将深入探讨四种关键的并发控制机制:synchronized关键字、ReentrantLock(可重入锁)、volatile关键字以及Atomic类的原理与应用。 ### 1. synchronized关键字 `synchronized`关键字是Java提供的内置锁,用于...

    简单了解java volatile关键字实现的原理

    下面我们将深入探讨`volatile`关键字的原理、使用场景以及与`synchronized`的区别。 一、`volatile`关键字的语义分析 1. **保证可见性**:当一个线程修改了`volatile`变量的值,其他所有线程都能立即看到这个变化...

    深入分析java并发编程中volatile的实现原理

    `volatile`的实现原理涉及到处理器层面的内存模型。在x86架构的处理器中,对`volatile`变量的写操作会额外添加一个`lock`前缀的汇编指令。这个指令有两个关键作用: 1. 将当前处理器缓存行的数据写回到系统内存,...

    java 中volatile和lock原理分析

    《Java中volatile与锁原理分析》 在多线程编程中,确保数据的一致性和可见性是至关重要的。Java提供了两种主要的机制来实现这一目标:volatile关键字和锁。本文将深入探讨这两种机制的原理,以及它们在实际编程中的...

    深入JVM内核—原理、诊断与优化

    《深入JVM内核—原理、诊断与优化》是一份深度探索Java虚拟机(JVM)的视频教程,旨在帮助开发者全面理解JVM的工作机制,掌握性能诊断技巧,并能进行有效的优化。本教程覆盖了从基础到高级的JVM主题,不仅适用于Java...

    嵌入式操作系统FreeRTOS的原理与实现

    通过对FreeRTOS的研究,我们可以深入理解嵌入式操作系统的实现原理。本文将详细介绍FreeRTOS中的任务调度机制、时间管理机制、任务管理机制以及内存分配策略,并分析其在实际应用中的优点和不足。 #### 1. FreeRTOS...

    聊聊并发系列文章

    #### 一、深入分析Volatile的实现原理 **引言** 在现代软件开发中,特别是在多线程编程领域,Volatile关键字的作用不可忽视。作为一种轻量级的同步机制,Volatile能够确保多线程环境下共享变量的可见性和一定程度...

    深入JVM内核 - 原理、诊断与优化

    内存模型和volatile实例 解释和编译运行的概念 介绍JVM的内部结构、启动流程以及内存模型。并介绍JVM字节码的执行方式。 第三课 常用JVM参数 堆的分配参数 栈分配及实例讲解 server与client模式 调试跟踪参数 介绍...

    Java-concurrentMap-内存模型深入分析-HotCode

    本文将深入探讨`concurrentMap`在Java内存模型(JMM,Java Memory Model)中的实现原理,以及如何通过HotCode优化并发性能。 Java内存模型定义了线程之间的共享变量访问规则,确保在多线程环境下正确地同步数据。...

    深入分析Java并发编程之CAS

    本文将深入探讨Java并发编程中的CAS机制及其在Java中的实现。 首先,CAS操作的原理是:在执行更新操作前,先比较当前变量的值是否与预期值相等,如果相等则更新,否则不做任何操作。这种乐观锁策略假设并发冲突较少...

    编译原理 厦大 实验一

    本实验的目的是通过实现词法分析器,更加深入地掌握词法分析的原理和技术。在编译原理课程中,词法分析是编译过程的第一阶段,它将源代码分解成一个个Token,以便后续的语法分析和语义分析阶段。本实验要求使用C++...

    基础知识.pdf

    深入分析了SpringMVC的运行和启动流程,以及Spring单例模式的实现原理。介绍了Netty框架,包括Netty的线程模型,零拷贝机制,内部执行流程,以及重连实现的原理。同时,对微服务架构、前后端分离、RPC框架、RESTful...

    编译原理-词法分析

    ### 编译原理-词法分析 #### 一、词法分析概述 词法分析是编译过程中的第一个阶段,其主要任务是对源程序进行扫描并...词法分析器的设计与实现对于理解编译原理至关重要,同时也是深入学习编程语言基础的重要环节。

    编译原理实验-词法分析器

    ### 编译原理实验——...通过本实验,我们不仅学会了如何设计和实现一个简单的词法分析器,还深入理解了词法分析的基本概念及其在编译过程中的重要性。此外,实验还帮助我们熟悉了C语言的语法结构,并提高了编程技能。

    Keil+C51总线外设操作问题的深入分析

    ### Keil+C51总线外设操作问题的深入分析 #### 问题背景与分析 在探讨Keil+C51编程环境下对同一端口进行连续读取操作时遇到的问题,首先需要理解这个问题出现的背景以及涉及到的技术细节。文章提到了在实际应用中...

    VLSI-Design of Non-Volatile Memories

    - **非易失性存储器技术**:详细分析了不同类型的非易失性存储器的工作原理、结构特点以及优缺点。 - **NOR Flash 的设计与实现**:特别关注了NOR Flash的设计方法、制造工艺和性能优化技巧。 - **案例研究**:提供...

Global site tag (gtag.js) - Google Analytics