eBay presented a keynote at Hadoop World, describing the architecture of its completely rebuilt search engine, Cassini, slated to go live in 2012. It indexes all the content and user metadata to produce better rankings and refreshes indexes hourly. It is built using Apache Hadoop for hourly index updates and Apache HBase to provide random access to item information. Hugh E. Williams the VP Search, Experience & Platforms for eBay Marketplaces delivered the keynote, where he outlined the scale, technologies used, and experiences from an 18 month effort by over 100 engineers to completely rebuild eBay's core site search. The new platform, Cassini, will support:
- 97 million active buyers & sellers
- 250 million queries per day
- 200 million items live in over 50,000 categories
eBay already stores 9 PB of data in Hadoop and Teradata clusters for analysis, but this will be their first production application that users use directly. The new system will be more extensive than the current one (Galileo):
10's of factors used for ranking | 100's of factors used for ranking |
title-only match by default | use all data to match by default |
manual intervention for rollout, monitoring, remediation | automated rollout, monitoring, remediation |
Cassini will keep 90 days of historical data online - currently 1 billion items, and include user and behavioral data for ranking. Most of the work required to support the search system is done in hourly batch jobs that run in Hadoop. Different kinds of indexes will all be generated in the same cluster (an improvement over Galileo, which had different clusters for each kind of indexing). The Hadoop environment allows eBay to restore or reclassify the entire site inventory as improvements are created.
Items are stored in HBase, and are normally scanned during the hourly index updates. When a new item is listed, it will be looked up in HBase and added to the live index within minutes. HBase also allows for bulk and incremental item writes and fast item reads and writes for item annotation.
Williams indicated that the team was familiar with running Hadoop and it had worked reliably with few problems. By contrast he indicated the "ride so far with HBase has been bumpy." Williams noted that eBay remains committed to the technology, have been contributing fixes to issues they found, are learning fast and that the last two weeks have gone smoothly. The engineering team was new to using HBase and ran into some issues when testing at scale, such as:
* production cluster configuration for their workloads
* hardware issues
* stability: unstable region servers, unstable master, regions stuck in transition
* monitoring HBase health: often problems haven't been detected until they impact live service - the team is adding lots of monitoring
* managing multi-step MapReduce jobs
Overall Williams felt the project was ambitious but had gone quickly and well, and that the team was able to use Hadoop and HBase to build a significantly improved search experience.
come from info
相关推荐
In his 2017 TED Talk, Strayer explains that constant engagement with technology—such as responding to emails, consuming news, and using social media—places significant stress on the prefrontal ...
RedisBloom v2.2.18 是一个专门为 Redis 数据库设计的布隆过滤器扩展模块,它提供了高效的数据去重和存在性检测功能。在理解这个版本之前,我们需要先了解 Redis 和布隆过滤器的基本概念。 Redis 是一个高性能的...
麻烦 简而言之 What `nmess` does for you: lays out an Express Node.js server scaffolds server routing prepares a database connection sets up a gulpfile that: compiles ECMAScript 6 to 5... readies We
iOS版微信抢红包Tweak.zip小程序
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
基于springboot社区停车信息管理系统.zip
基于springboot南皮站化验室管理系统源码数据库文档.zip
## 数据指标说明 全要素生产率(TFP)也可以称之为系统生产率。指生产单位(主要为企业)作为系统中的各个要素的综合生产率,以区别于要素生产率(如技术生产率)。测算公式为:全要素生产率=产出总量/全部资源投入量。 数据测算:包含OL、FE、LP、OP、GMM共五种TFP测算方法!数据结果包括excel和dta格式,其中重要指标包括证券代码,固定资产净额,营业总收入,营业收入,营业成本,销售费用,管理费用,财务费用,购建固定资产无形资产和其他长期资产支付的现金,支付给职工以及为职工支付的现金,员工人数,折旧摊销,行业代码,上市日期,AB股交叉码,退市日期,年末是否ST或PT等变量指标分析。文件包括计算方法说明及原始数据和代码。 数据名称:上市公司全要素生产率TFP数据及测算方法(OL、FE、LP、OP、GMM) 数据年份:2000-2023年 数据指标:证券代码、year、TFP_OLS、TFP_FE、TFP_LP1、TFP_OP、TFP_OPacf、TFP_GMM
内容概要:本文详细总结了多种编程语言下常用的算法实现资源,涵盖Python、C++、Java等流行编程语言及其相关的开源平台、在线课程和权威书籍。对于每种语言而言,均提供了具体资源列表,包括开源项目、标准库支持、在线课程及专业书籍推荐。 适合人群:适用于所有希望深入研究并提高特定编程语言算法能力的学习者,无论是编程新手还是有一定经验的技术人员。 使用场景及目标:帮助开发者快速定位到合适的算法学习资料,无论是出于个人兴趣自学、面试准备或是实际工作中遇到的具体算法问题,都能找到合适的解决方案。 其他说明:文中提及多个在线学习平台和社区网站,不仅限于某一特定语言,对于跨学科或多元化技能培养也具有很高的参考价值。
基于springboot的交通旅游订票系统源码数据库文档.zip
内容概要:本文档是一份详细的GO语言教程,涵盖了Go语言的基础语法、数据类型、控制结构、函数、结构体、接口以及并发编程等多个方面。主要内容包括Go语言的基本概念和历史背景、环境配置、基本语法(如变量、数据类型、控制结构)、函数定义与调用、高级特性(如闭包、可变参数)、自定义数据类型(如结构体、接口)以及并发编程(如goroutine、channel、select)等内容。每部分内容都附有具体的代码示例,帮助读者理解和掌握相关知识点。 适合人群:具备一定编程基础的开发者,尤其是希望深入学习和应用Go语言的技术人员。 使用场景及目标:①初学者通过本教程快速入门Go语言;②有一定经验的开发者系统复习和完善Go语言知识;③实际项目开发中利用Go语言解决高性能、高并发的编程问题。 阅读建议:本文档全面介绍了Go语言的各项基础知识和技术细节,建议按章节顺序逐步学习,通过动手实践代码示例加深理解。对于复杂的概念和技术点,可以通过查阅更多资料或进行深入研究来巩固知识。
GEE训练教程
memcached笔记资料,配套视频:https://www.bilibili.com/list/474327672?sid=4486766&spm_id_from=333.999.0.0&desc=1
基于springboot校内跑腿业务系统源码数据库文档.zip
计算机控制光感自动窗帘控制系统设计.doc
基于SpringBoot的校园服务系统源码数据库文档.zip
基于SpringBoot+Vue的美容店信息管理系统源码数据库文档.zip
基于springboot程序设计基础课程辅助教学系统源码数据库文档.zip
这是一个原生的JS网页版斗地主小游戏,代码注释全。带有斗地主游戏基本的地主、选牌、提示、出牌、倒计时等功能。简单好玩,欢迎下载
基于springboot亚运会志愿者管理系统源码数据库文档.zip