`
smalljavaer
  • 浏览: 9795 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

基于索引的数据库查询优化

 
阅读更多

1 前言
客服业务受到SQL语句的影响非常大,在规模比较大的局点,往往因为一个小的SQL语句不够优化,导致数据库性能急剧下降,小型机idle所剩无几,应用服务器断连、超时,严重影响业务的正常运行。因此,称低效的SQL语句为客服业务的‘恶龙’并不过分。数据库的优化方法有很多种,在应用层来说,主要是基于索引的优化。本次秘笈根据实际的工作经验,在研发原来已有的方法的基础上,进行了一些扩充,总结了基于索引的SQL语句优化的降龙十八掌,希望有一天你能用其中一掌来驯服客服业务中横行的‘恶龙’。

2 总纲——建立必要的索引
降龙十八掌,总纲只有一句话:建立必要的索引,这就是后面降龙十八掌的内功基础。这一点看似容易实际却很难。难就难在如何判断哪些索引是必要的,哪些又是不必要的。判断的最终标准是看这些索引是否对我们的数据库性能有所帮助。具体到方法上,就必须熟悉数据库应用程序中的所有SQL语句,从中统计出常用的可能对性能有影响的部分SQL,分析、归纳出作为Where条件子句的字段及其组合方式;在这一基础上可以初步判断出哪些表的哪些字段应该建立索引。其次,必须熟悉应用程序。必须了解哪些表是数据操作频繁的表;哪些表经常与其他表进行连接;哪些表中的数据量可能很大;对于数据量大的表,其中各个字段的数据分布情况如何;等等。对于满足以上条件的这些表,必须重点关注,因为在这些表上的索引,将对SQL语句的性能产生举足轻重的影响。不过下面还是总结了一下降龙十八掌内功的入门基础,建立索引常用的规则如下:
(1) 表的主键、外键必须有索引;
(2) 数据量超过300的表应该有索引;
(3) 经常与其他表进行连接的表,在连接字段上应该建立索引;
(4) 经常出现在Where子句中的字段,特别是大表的字段,应该建立索引;
(5) 索引应该建在选择性高的字段上;
(6) 索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引;
(7) 复合索引的建立需要进行仔细分析;尽量考虑用单字段索引代替:
A、正确选择复合索引中的主列字段,一般是选择性较好的字段;
B、复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单字段索引;
C、如果复合索引中包含的字段经常单独出现在Where子句中,则分解为多个单字段索引;
D、如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段;
E、如果既有单字段索引,又有这几个字段上的复合索引,一般可以删除复合索引;
(8) 频繁进行数据操作的表,不要建立太多的索引;
(9) 删除无用的索引,避免对执行计划造成负面影响;
以上是一些普遍的建立索引时的判断依据。一言以蔽之,索引的建立必须慎重,对每个索引的必要性都应该经过仔细分析,要有建立的依据。因为太多的索引与不充分、不正确的索引对性能都毫无益处:在表上建立的每个索引都会增加存储开销,索引对于插入、删除、更新操作也会增加处理上的开销。 另外,过多的复合索引,在有单字段索引的情况下,一般都是没有存在价值的;相反,还会降低数据增加删除时的性能,特别是对频繁更新的表来说,负面影响更大。

3 降龙十八掌

第一掌 避免对列的操作
任何对列的操作都可能导致全表扫描,这里所谓的操作包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等式的右边,甚至去掉函数。
例1:下列SQL条件语句中的列都建有恰当的索引,但30万行数据情况下执行速度却非常慢:
select * from record where substrb(CardNo,1,4)='5378'(13秒)
select * from record where amount/30< 1000(11秒)
select * from record where to_char(ActionTime,'yyyymmdd')='19991201'(10秒)
由于where子句中对列的任何操作结果都是在SQL运行时逐行计算得到的,因此它不得不进行表扫描,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表扫描,因此将SQL重写如下:
select * from record where CardNo like '5378%'(< 1秒)
select * from record where amount < 1000*30(< 1秒)
select * from record where ActionTime= to_date ('19991201' ,'yyyymmdd')(< 1秒)
差别是很明显的!

第二掌 避免不必要的类型转换
需要注意的是,尽量避免潜在的数据类型转换。如将字符型数据与数值型数据比较,ORACLE会自动将字符型用to_number()函数进行转换,从而导致全表扫描。
例2:表tab1中的列col1是字符型(char),则以下语句存在类型转换:
select col1,col2 from tab1 where col1>10,
应该写为: select col1,col2 from tab1 where col1>'10'。

第三掌 增加查询的范围限制
增加查询的范围限制,避免全范围的搜索。
例3:以下查询表record 中时间ActionTime小于2001年3月1日的数据:
select * from record where ActionTime < to_date ('20010301' ,'yyyymm')
查询计划表明,上面的查询对表进行全表扫描,如果我们知道表中的最早的数据为2001年1月1日,那么,可以增加一个最小时间,使查询在一个完整的范围之内。修改如下: select * from record where
ActionTime < to_date ('20010301' ,'yyyymm')
and ActionTime > to_date ('20010101' ,'yyyymm')
后一种SQL语句将利用上ActionTime字段上的索引,从而提高查询效率。把'20010301'换成一个变量,根据取值的机率,可以有一半以上的机会提高效率。同理,对于大于某个值的查询,如果知道当前可能的最大值,也可以在Where子句中加上 “AND 列名< MAX(最大值)”。

第四掌 尽量去掉"IN"、"OR"
含有"IN"、"OR"的Where子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把子句拆开;拆开的子句中应该包含索引。
例4:select count(*) from stuff where id_no in('0','1')(23秒)
可以考虑将or子句分开:
select count(*) from stuff where id_no='0'
select count(*) from stuff where id_no='1'
然后再做一个简单的加法,与原来的SQL语句相比,查询速度更快。

第五掌 尽量去掉 "<>"
尽量去掉 "<>",避免全表扫描,如果数据是枚举值,且取值范围固定,则修改为"OR"方式。
例5:UPDATE SERVICEINFO SET STATE=0 WHERE STATE<>0;
以上语句由于其中包含了"<>",执行计划中用了全表扫描(TABLE ACCESS FULL),没有用到state字段上的索引。实际应用中,由于业务逻辑的限制,字段state为枚举值,只能等于0,1或2,而且,值等于=1,2的很少,因此可以去掉"<>",利用索引来提高效率。
修改为:UPDATE SERVICEINFO SET STATE=0 WHERE STATE = 1 OR STATE = 2 。进一步的修改可以参考第4种方法。

第六掌 去掉Where子句中的IS NULL和IS NOT NULL
Where字句中的IS NULL和IS NOT NULL将不会使用索引而是进行全表搜索,因此需要通过改变查询方式,分情况讨论等方法,去掉Where子句中的IS NULL和IS NOT NULL。

第七掌 索引提高数据分布不均匀时查询效率
索引的选择性低,但数据的值分布差异很大时,仍然可以利用索引提高效率。A、数据分布不均匀的特殊情况下,选择性不高的索引也要创建。
表ServiceInfo中数据量很大,假设有一百万行,其中有一个字段DisposalCourseFlag,取值范围为枚举值:[0,1,2,3,4,5,6,7]。按照前面说的索引建立的规则,“选择性不高的字段不应该建立索引,该字段只有8种取值,索引值的重复率很高,索引选择性明显很低,因此不建索引。然而,由于该字段上数据值的分布情况非常特殊,具体如下表:
取值范围1~567
占总数据量的百分比1%98%1%
而且,常用的查询中,查询DisposalCourseFlag<6 的情况既多又频繁,毫无疑问,如果能够建立索引,并且被应用,那么将大大提高这种情况的查询效率。因此,我们需要在该字段上建立索引。

第八掌 利用HINT强制指定索引
在ORACLE优化器无法用上合理索引的情况下,利用HINT强制指定索引。
继续上面7的例子,ORACLE缺省认定,表中列的值是在所有数据行中均匀分布的,也就是说,在一百万数据量下,每种DisposalCourseFlag值各有12.5万数据行与之对应。假设SQL搜索条件DisposalCourseFlag=2,利用DisposalCourseFlag列上的索引进行数据搜索效率,往往不比全表扫描的高,ORACLE因此对索引“视而不见”,从而在查询路径的选择中,用其他字段上的索引甚至全表扫描。根据我们上面的分析,数据值的分布很特殊,严重的不均匀。为了利用索引提高效率,此时,一方面可以单独对该字段或该表用analyze语句进行分析,对该列搜集足够的统计数据,使ORACLE在查询选择性较高的值时能用上索引;另一方面,可以利用HINT提示,在SELECT关键字后面,加上“/*+ INDEX(表名称,索引名称)*/”的方式,强制ORACLE优化器用上该索引。
比如:
select * from serviceinfo where DisposalCourseFlag=1 ;
上面的语句,实际执行中ORACLE用了全表扫描,加上蓝色提示部分后,用到索引查询。如下:
select /*+ INDEX(SERVICEINFO,IX_S_DISPOSALCOURSEFLAG) */ *
from serviceinfo where DisposalCourseFlag=1;
请注意,这种方法会加大代码维护的难度,而且该字段上索引的名称被改变之后,必须要同步所有指定索引的HINT代码,否则HINT提示将被ORACLE忽略掉。

第九掌 屏蔽无用索引
继续上面8的例子,由于实际查询中,还有涉及到DisposalCourseFlag=6的查询,而此时如果用上该字段上的索引,将是非常不明智的,效率也极低。因此这种情况下,我们需要用特殊的方法屏蔽该索引,以便ORACLE选择其他字段上的索引。比如,如果字段为数值型的就在表达式的字段名后,添加“+ 0”,为字符型的就并上空串:“||""”
如: select * from serviceinfo where DisposalCourseFlag+ 0 = 6 and workNo = '36' 。
不过,不要把该用的索引屏蔽掉了,否则同样会产生低效率的全表扫描。

第十掌 分解复杂查询,用常量代替变量
对于复杂的Where条件组合,Where中含有多个带索引的字段,考虑用IF语句分情况进行讨论;同时,去掉不必要的外来参数条件,减低复杂度,以便在不同情况下用不同字段上的索引。
继续上面9的例子,对于包含
Where (DisposalCourseFlag < v_DisPosalCourseFlag) or (v_DisPosalCourseFlag is null) and ....的查询,(这里v_DisPosalCourseFlag为一个输入变量,取值范围可能为[NULL,0,1,2,3,4,5,6,7]),可以考虑分情况用IF语句进行讨论,类似:
IF v_DisPosalCourseFlag =1 THEN
Where DisposalCourseFlag = 1 and ....
ELSIF v_DisPosalCourseFlag =2 THEN
Where DisposalCourseFlag = 2 and ....

第十一掌 like子句尽量前端匹配
因为like参数使用的非常频繁,因此如果能够对like子句使用索引,将很高的提高查询的效率。
例6:select * from city where name like ‘%S%’
以上查询的执行计划用了全表扫描(TABLE ACCESS FULL),如果能够修改为:
select * from city where name like ‘S%’
那么查询的执行计划将会变成(INDEX RANGE SCAN),成功的利用了name字段的索引。这意味着Oracle SQL优化器会识别出用于索引的like子句,只要该查询的匹配端是具体值。因此我们在做like查询时,应该尽量使查询的匹配端是具体值,即使用like ‘S%’。

第十二掌 用Case语句合并多重扫描
我们常常必须基于多组数据表计算不同的聚集。例如下例通过三个独立查询:
例8:1)select count(*) from emp where sal<1000;
2)select count(*) from emp where sal between 1000 and 5000;
3)select count(*) from emp where sal>5000;
这样我们需要进行三次全表查询,但是如果我们使用case语句:
select
count (sale when sal <1000
then 1 else null end)count_poor,
count (sale when between 1000 and 5000
then 1 else null end)count_blue_collar,
count (sale when sal >5000
then 1 else null end)count_poor
from emp;
这样查询的结果一样,但是执行计划只进行了一次全表查询。

第十三掌 使用nls_date_format
例9:
select * from record where to_char(ActionTime,'mm')='12'
这个查询的执行计划将是全表查询,如果我们改变nls_date_format,
SQL>alert session set nls_date_formate=’MM’;
现在重新修改上面的查询:
select * from record where ActionTime='12'
这样就能使用actiontime上的索引了,它的执行计划将是(INDEX RANGE SCAN)。

第十四掌 使用基于函数的索引
前面谈到任何对列的操作都可能导致全表扫描,例如:
select * from emp where substr(ename,1,2)=’SM’;
但是这种查询在客服系统又经常使用,我们可以创建一个带有substr函数的基于函数的索引,
create index emp_ename_substr on eemp ( substr(ename,1,2) );
这样在执行上面的查询语句时,这个基于函数的索引将排上用场,执行计划将是(INDEX RANGE SCAN)。

第十五掌 基于函数的索引要求等式匹配
上面的例子中,我们创建了基于函数的索引,但是如果执行下面的查询:
select * from emp where substr(ename,1,1)=’S’
得到的执行计划将还是(TABLE ACCESS FULL),因为只有当数据列能够等式匹配时,基于函数的索引才能生效,这样对于这种索引的计划和维护的要求都很高。请注意,向表中添加索引是非常危险的操作,因为这将导致许多查询执行计划的变更。然而,如果我们使用基于函数的索引就不会产生这样的问题,因为Oracle只有在查询使用了匹配的内置函数时才会使用这种类型的索引。

第十六掌 使用分区索引
在用分析命令对分区索引进行分析时,每一个分区的数据值的范围信息会放入Oracle的数据字典中。Oracle可以利用这个信息来提取出那些只与SQL查询相关的数据分区。
例如,假设你已经定义了一个分区索引,并且某个SQL语句需要在一个索引分区中进行一次索引扫描。Oracle会仅仅访问这个索引分区,而且会在这个分区上调用一个此索引范围的快速全扫描。因为不需要访问整个索引,所以提高了查询的速度。

第十七掌 使用位图索引
位图索引可以从本质上提高使用了小于1000个唯一数据值的数据列的查询速度,因为在位图索引中进行的检索是在RAM中完成的,而且也总是比传统的B树索引的速度要快。对于那些少于1000个唯一数据值的数据列建立位图索引,可以使执行效率更快。

第十八掌 决定使用全表扫描还是使用索引
和所有的秘笈一样,最后一招都会又回到起点,最后我们来讨论一下是否需要建立索引,也许进行全表扫描更快。在大多数情况下,全表扫描可能会导致更多的物理磁盘输入输出,但是全表扫描有时又可能会因为高度并行化的存在而执行的更快。如果查询的表完全没有顺序,那么一个要返回记录数小于10%的查询可能会读取表中大部分的数据块,这样使用索引会使查询效率提高很多。但是如果表非常有顺序,那么如果查询的记录数大于40%时,可能使用全表扫描更快。因此,有一个索引范围扫描的总体原则是:
1) 对于原始排序的表 仅读取少于表记录数40%的查询应该使用索引范围扫描。反之,读取记录数目多于表记录数的40%的查询应该使用全表扫描。
2) 对于未排序的表 仅读取少于表记录数7%的查询应该使用索引范围扫描。反之,读取记录数目多于表记录数的7%的查询应该使用全表扫描。

4 总结
以上的招式,是完全可以相互结合同时运用的。而且各种方法之间相互影响,紧密联系。这种联系既存在一致性,也可能带来冲突,当冲突发生时,需要根据实际情况进行选择,没有固定的模式。最后决定SQL优化功力的因素就是对ORACLE内功的掌握程度了。
另外,值得注意的是:随着时间的推移和数据的累计与变化,ORACLE对SQL语句的执行计划也会改变,比如:基于代价的优化方法,随着数据量的增大,优化器可能错误的不选择索引而采用全表扫描。这种情况可能是因为统计信息已经过时,在数据量变化很大后没有及时分析表;但如果对表进行分析之后,仍然没有用上合理的索引,那么就有必要对SQL语句用HINT提示,强制用合理的索引。但这种HINT提示也不能滥用,因为这种方法过于复杂,缺乏通用性和应变能力,同时也增加了维护上的代价;相对来说,基于函数右移、去掉“IN ,OR ,<> ,IS NOT NULL ”、分解复杂的SQL语句等等方法,却是“放之四海皆准”的,可以放心大胆的使用。
同时,优化也不是“一劳永逸”的,必须随着情况的改变进行相应的调整。当数据库设计发生变化,包括更改表结构:字段和索引的增加、删除或改名等;业务逻辑发生变化:如查询方式、取值范围发生改变等等。在这种情况下,也必须对原有的优化进行调整,以适应效率上的需求

分享到:
评论

相关推荐

    数据库查询优化算法

    在数据库领域,有三种经典的查询优化算法:基于成本的优化、基于规则的优化以及动态规划优化。下面将详细介绍这三种算法及其在实际应用中的作用。 1. 基于成本的优化(Cost-Based Optimization, CBO) 基于成本的...

    遗传算法和实时数据库规则结合的数据库查询优化方案设计.pdf

    "遗传算法和实时数据库规则结合的数据库...本文旨在设计一个基于遗传算法和实时数据库规则的数据库查询优化方案,以提高数据库查询的效率和正确性。该方案可以用于实时数据库系统,以提高数据库查询的效率和正确性。

    基于MySQL的数据库查询性能优化.pdf

    "基于MySQL的数据库查询性能优化" 在当前的Web应用开发中,数据库的查询操作已经成为整个应用的性能瓶颈, especialmente 对于使用 MySQL 的 Web 应用。因此,数据库查询性能的优化已经成为一个非常重要的课题。...

    基于Oracle数据库索引的查询优化研究.pdf

    本文将深入探讨索引的概念、分类以及如何利用索引来优化查询性能。 1. 索引的作用与重要性 数据库索引如同书籍的目录,能够极大地加快数据查找速度,减少磁盘I/O操作,提高查询效率。在处理大量数据的大型表中,...

    基于合理索引的数据库查询优化研究.pdf

    为了优化查询性能,我们可以考虑以下几点: - **针对`OrderDate`建立聚集索引**:假设我们需要频繁查询某段时间内的销售记录,那么可以考虑在`OrderDate`上建立聚集索引,这样可以显著提高这类查询的速度。 - **...

    分布式数据库查询优化

    1. **基于索引的优化**:通过在数据库表的关键列上建立索引,可以显著提高查询速度。例如,在经常用于连接操作的列上建立索引可以避免全表扫描。需要注意的是,创建索引本身也需要消耗一定的资源,因此需要根据实际...

    基于ORACLE数据库查询优化方法研究.pdf

    《基于ORACLE数据库查询优化方法研究》这篇论文深入探讨了如何提升ORACLE数据库查询效率,以应对日益增长的数据量和复杂的应用需求。论文主要从四个方面展开: 首先,论文提到提高查询命中率是优化的关键。命中率指...

    Oracle数据库查询优化的方法

    本文重点分析Oracle数据库索引及临时表在查询中的应用,并探讨了基于索引使用SQL语句进行数据库效率优化的几种实现方法。 在Oracle数据库中,索引的合理运用能够显著提升查询速度,减少I/O操作,避免磁盘排序。通常...

    基于MySQL数据库的查询性能优化研究.pdf

    3. 优化查询语句:优化查询语句,例如使用 EXISTS 语句代替 IN 语句、避免使用HAVING 子句等。 4. 使用缓存机制:使用缓存机制可以大大提高查询速度,例如使用 MySQL 的查询缓存机制等。 提高 MySQL 数据库的查询...

    基于分布式数据库的查询优化方法探究.pdf

    3. 数据索引优化:在分布式数据库中,合理使用索引可以显著提高查询速度。但是索引的创建和维护需要额外开销,因此需要平衡索引带来的查询性能提升和维护成本。 4. 并行查询处理:多个节点同时执行查询操作,通过...

    基于Oracle数据库的索引优化.pdf

    "基于Oracle数据库的索引优化" Oracle数据库是一种关系型数据库管理系统,索引优化是其性能优化的关键。索引是数据库中的一种数据结构,可以极大地提高数据查询效率。 Oracle 提供了多种类型的索引,如B树索引、...

    MySQL数据库查询优化

    综述数据库、关系代数、查询优化技术 综述数据库调优技术 预计时间1小时 第2课 数据库查询优化技术总揽 综述查询优化技术范围,包括查询重用、查询重写规则、查询算法优化、并行查询优化等 综述逻辑查询优化,包括...

    基于Oracle数据库查询优化策略的研究.pdf

    执行计划是优化查询性能的核心。在Oracle中,执行计划显示了SQL语句执行的具体步骤,包括如何访问数据,如全盘扫描和ROWID扫描。全盘扫描会读取表的所有行,而ROWID扫描则通过行的唯一标识符定位数据。此外,B树索引...

    基于机器学习的查询优化研究.docx

    但是,仍然存在许多挑战,如如何处理复杂的多表查询、如何确保查询的准确性和如何优化查询性能等。 在研究方法上,采用了多种特征选择方法,以提取出最具代表性的查询特征。然后,构建了一个深度学习模型,用于预测...

    基于索引的SQL语句查询优化方法.pdf

    《基于索引的SQL语句查询优化方法》这篇文章主要探讨了如何通过建立合适的索引和在应用程序中有效地利用这些索引来优化SQL查询,从而提升数据库性能。查询优化在关系数据库系统中扮演着至关重要的角色,因为SQL语句...

    基于SQL Server的数据库查询优化分析.pdf

    以下是对基于SQL Server数据库查询优化的一些关键知识点的详细分析: 首先,优化数据库结构是提高查询效率的基础。在设计数据库时,对包含数值信息的字段采用数字型字段而非字符型字段,能够提高查询和连接的性能,...

    毕业论文-数据库查询优化策略分析

    本文档是一篇关于“数据库查询优化策略分析”的毕业论文,主要研究如何提升数据库查询效率,内容包括基于索引的优化策略和SQL语句的优化方法。随着信息技术的发展,数据库在各行各业中的重要性日益凸显,数据库查询...

    数据库的查询优化技术

    本文将基于提供的部分内容,详细介绍数据库查询优化的重要技术和策略。 #### 二、数据库查询优化的重要性 数据库查询优化是指在执行SQL查询时选择最高效的查询执行计划的过程。这一过程对于提高数据库性能至关重要...

Global site tag (gtag.js) - Google Analytics