预排序遍历树算法 modified preorder tree traversal algorithm
产品分类,多级的树状结构的论坛,邮件列表等许多地方我们都会遇到这样的问题:如何存储多级结构的数据?在PHP的应用中,提供后台数据存储的通常 是关系型数据库,它能够保存大量的数据,提供高效的数据检索和更新服务。然而关系型数据的基本形式是纵横交错的表,是一个平面的结构,如果要将多级树状结 构存储在关系型数据库里就需要进行合理的翻译工作。接下来我会将自己的所见所闻和一些实用的经验和大家探讨一下:
层级结构的数据保存在平面的数据库中基本上有两种常用设计方法:
1、毗邻目录模式(adjacency list model)
2、预排序遍历树算法(modified preorder tree traversal algorithm)
我不是计算机专业的,也没有学过什么数据结构的东西,所以这两个名字都是我自己按照字面的意思翻的,如果说错了还请多多指教。
这两个东西听着好像很吓人,其实非常容易理解。这里我用一个简单食品目录作为我们的示例数据。
我们的数据结构是这样的
以下是代码:
Food
|
|—Fruit
| |
| |—Red
| | |
| | |–Cherry
| |
| |—Yellow
| | |
| | |–Banana
|
|—Meat
|
|–Beef
|
|–Pork
为了照顾那些英文一塌糊涂的PHP爱好者
Food:食物
Fruit:水果
Red:红色
Cherry:樱桃
Yellow:黄色
Banana:香蕉
Meat:肉类
Beef:牛肉
Pork:猪肉
毗邻目录模式(adjacency list model)
这种模式我们经常用到,很多的教程和书中也介绍过。我们通过给每个节点增加一个属性 parent 来表示这个节点的父节点从而将整个树状结构通过平面的表描述出来。根据这个原则,例子中的数据可以转化成如下的表:
以下是代码:
+———————–+
| parent | name |
+———————–+
| | Food |
| Food | Fruit |
| Fruit | Green |
| Green | Pear |
| Fruit | Red |
| Red | Cherry |
| Fruit | Yellow |
| Yellow | Banana |
| Food | Meat |
| Meat | Beef |
| Meat | Pork |
+———————–+
我们看到 Pear 是Green的一个子节点,Green是Fruit的一个子节点。而根节点’Food’没有父节 点。 为了简单地描述这个问题, 这个例子中只用了name来表示一个记录。 在实际的数据库中,你需要用数字的id来标示每个节点,数据库的表结构大概 应该像这样:id, parent_id, name, descrīption。
有了这样的表我们就可以通过数据库保存整个多级树状结构了。
显示多级树
如果我们需要显示这样的一个多级结构需要一个递归函数。
以下是代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
<?php // $parent is the parent of the children we want to see // $level is increased when we go deeper into the tree, // used to display a nice indented tree function display_children( $parent , $level ) {
// 获得一个 父节点 $parent 的所有子节点
$result = mysql_query( 'SELECT name FROM tree WHERE parent="' . $parent . '";' );
// 显示每个子节点
while ( $row = mysql_fetch_array( $result )) {
// 缩进显示节点名称
echo str_repeat ( ' ' , $level ). $row [ 'name' ]. "n" ;
//再次调用这个函数显示子节点的子节点
display_children( $row [ 'name' ], $level +1);
}
} ?> |
对整个结构的根节点(Food)使用这个函数就可以打印出整个多级树结构,由于Food是根节点它的父节点是空的,所以这样调用: display_children(”,0)。将显示整个树的内容:
Food
Fruit
Red
Cherry
Yellow
Banana
Meat
Beef
Pork
如果你只想显示整个结构中的一部分,比如说水果部分,就可以这样调用:display_children(‘Fruit’,0);
几 乎使用同样的方法我们可以知道从根节点到任意节点的路径。比如 Cherry 的路径是 “Food >; Fruit >; Red”。 为了得到这样的一个路径我们需要从最深的一级”Cherry”开始, 查询得到它的父节 点”Red”把它添加到路径中, 然后我们再查询Red的父节点并把它也添加到路径中,以此类推直到最高层的”Food”
以下是代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
<?php // $node 是那个最深的节点 function get_path( $node ) {
// 查询这个节点的父节点
$result = mysql_query( 'SELECT parent FROM tree WHERE name="' . $node . '";' );
$row = mysql_fetch_array( $result );
// 用一个数组保存路径
$path = array ();
// 如果不是根节点则继续向上查询
// (根节点没有父节点)
if ( $row [ 'parent' ]!= '' ) {
// the last part of the path to $node, is the name
// of the parent of $node
$path [] = $row [ 'parent' ];
// we should add the path to the parent of this node
// to the path
$path = array_merge (get_path( $row [ 'parent' ]), $path );
}
// return the path
return $path ;
} ?> |
如果对”Cherry”使用这个函数:print_r(get_path(‘Cherry’)),就会得到这样的一个数组了:
1
2
3
4
5
6
|
Array ( [0] =>; Food
[1] =>; Fruit
[2] =>; Red
) |
接下来如何把它打印成你希望的格式,就是你的事情了。
缺点:
这种方法很简单,容易理解,好上手。但是也有一些缺点。主要是因为运行速度很慢,由于得到每个节点都需要进行数据库查询,数据量大的时候要进行很多查询才能完成一个树。另外由于要进行递归运算,递归的每一级都需要占用一些内存所以在空间利用上效率也比较低。
现在让我们看一看另外一种不使用递归计算,更加快速的方法,这就是预排序遍历树算法(modified preorder tree traversal algorithm)
这种方法大家可能接触的比较少,初次使用也不像上面的方法容易理解,但是由于这种方法不使用递归查询算法,有更高的查询效率。
我 们首先将多级数据按照下面的方式画在纸上,在根节点Food的左侧写上 1 然后沿着这个树继续向下 在 Fruit 的左侧写上 2 然后继续前进,沿 着整个树的边缘给每一个节点都标上左侧和右侧的数字。最后一个数字是标在Food 右侧的 18。 在下面的这张图中你可以看到整个标好了数字的多级结 构。(没有看懂?用你的手指指着数字从1数到18就明白怎么回事了。还不明白,再数一遍,注意移动你的手指)。
这些数字标明了各个节点之间的关系,”Red”的号是3和6,它是 “Food” 1-18 的子孙节点。 同样,我们可以看到 所有左值大于2和右值小于11的节点 都是”Fruit” 2-11 的子孙节点
以下是代码:
1
2
3
4
5
6
|
1 Food 18
+-------------------------------------------+ 2 Fruit 11 12 Meat 17
+------------------------+ +-----------------------+ 3 Red 6 7 Yellow 10 13 Beef 14 15 Pork 16 4 Cherry 5 8 Banana 9 |
这样整个树状结构可以通过左右值来存储到数据库中。继续之前,我们看一看下面整理过的数据表。
以下是代码:
+———————–+—–+—–+
| parent | name | lft | rgt |
+———————–+—–+—–+
| | Food | 1 | 18 |
| Food | Fruit | 2 | 11 |
| Fruit | Red | 3 | 6 |
| Red | Cherry | 4 | 5 |
| Fruit | Yellow | 7 | 10 |
| Yellow | Banana | 8 | 9 |
| Food | Meat | 12 | 17 |
| Meat | Beef | 13 | 14 |
| Meat | Pork | 15 | 16 |
+———————–+—–+—–+
注意:由于”left”和”right”在 SQL中有特殊的意义,所以我们需要用”lft”和”rgt”来表示左右字段。 另外这种结构中不再需要”parent”字段来表示树状结构。也就是 说下面这样的表结构就足够了。
以下是代码:
+————+—–+—–+
| name | lft | rgt |
+————+—–+—–+
| Food | 1 | 18 |
| Fruit | 2 | 11 |
| Red | 3 | 6 |
| Cherry | 4 | 5 |
| Yellow | 7 | 10 |
| Banana | 8 | 9 |
| Meat | 12 | 17 |
| Beef | 13 | 14 |
| Pork | 15 | 16 |
+————+—–+—–+
好了我们现在可以从数据库中获取数据了,例如我们需要得到”Fruit”项下的所有所有节点就可以这样写查询语句:
SELECT * FROM tree WHERE lft BETWEEN 2 AND 11;
这个查询得到了以下的结果。
以下是代码:
+————+—–+—–+
| name | lft | rgt |
+————+—–+—–+
| Fruit | 2 | 11 |
| Red | 3 | 6 |
| Cherry | 4 | 5 |
| Yellow | 7 | 10 |
| Banana | 8 | 9 |
+————+—–+—–+
看到了吧,只要一个查询就可以得到所有这些节点。为了能够像上面的递归函数那样显示整个树状结构,我们还需要对这样的查询进行排序。用节点的左值进行排序:
SELECT * FROM tree WHERE lft BETWEEN 2 AND 11 ORDER BY lft ASC;
剩下的问题如何显示层级的缩进了。
以下是代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
<?php function display_tree( $root ) {
// 得到根节点的左右值
$result = mysql_query( 'SELECT lft, rgt FROM tree ' . 'WHERE name="' . $root . '";' );
$row = mysql_fetch_array( $result );
// 准备一个空的右值堆栈
$right = array ();
// 获得根基点的所有子孙节点
$result = mysql_query( 'SELECT name, lft, rgt FROM tree WHERE lft BETWEEN ' . $row [ 'lft' ]. ' AND ' . $row [ 'rgt' ]. ' ORDER BY lft ASC;' );
// 显示每一行
while ( $row = mysql_fetch_array( $result )) {
// only check stack if there is one
if ( count ( $right )>0) {
// 检查我们是否应该将节点移出堆栈
while ( $right [ count ( $right )-1]< $row [ 'rgt' ]) {
array_pop ( $right );
}
}
// 缩进显示节点的名称
echo str_repeat ( ' ' , count ( $right )). $row [ 'name' ]. "n" ;
// 将这个节点加入到堆栈中
$right [] = $row [ 'rgt' ];
}
} ?> |
如果你运行一下以上的函数就会得到和递归函数一样的结果。只是我们的这个新的函数可能会更快一些,因为只有2次数据库查询。
要获知一个节点的路径就更简单了,如果我们想知道Cherry 的路径就利用它的左右值4和5来做一个查询。
SELECT name FROM tree WHERE lft < 4 AND rgt >; 5 ORDER BY lft ASC;
这样就会得到以下的结果:
以下是代码:
+————+
| name |
+————+
| Food |
| Fruit |
| Red |
+————+
那么某个节点到底有多少子孙节点呢?很简单,子孙总数=(右值-左值-1)/2
descendants = (right – left – 1) / 2
不相信?自己算一算啦。
用这个简单的公式,我们可以很快的算出”Fruit 2-11″节点有4个子孙节点,而”Banana 8-9″节点没有子孙节点,也就是说它不是一个父节点了。
很神奇吧?虽然我已经多次用过这个方法,但是每次这样做的时候还是感到很神奇。
这的确是个很好的办法,但是有什么办法能够帮我们建立这样有左右值的数据表呢?这里再介绍一个函数给大家,这个函数可以将name和parent结构的表自动转换成带有左右值的数据表。
以下是代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
<?php function rebuild_tree( $parent , $left ) {
// the right value of this node is the left value + 1
$right = $left +1;
// get all children of this node
$result = mysql_query( 'SELECT name FROM tree WHERE parent="' . $parent . '";' );
while ( $row = mysql_fetch_array( $result )) {
// recursive execution of this function for each
// child of this node
// $right is the current right value, which is
// incremented by the rebuild_tree function
$right = rebuild_tree( $row [ 'name' ], $right );
}
// we've got the left value, and now that we've processed
// the children of this node we also know the right value
mysql_query( 'UPDATE tree SET lft=' . $left . ', rgt=' . $right . ' WHERE name="' . $parent . '";' );
// return the right value of this node + 1
return $right +1;
} ?> |
当然这个函数是一个递归函数,我们需要从根节点开始运行这个函数来重建一个带有左右值的树
rebuild_tree(‘Food’,1);
这个函数看上去有些复杂,但是它的作用和手工对表进行编号一样,就是将立体多层结构的转换成一个带有左右值的数据表。
那么对于这样的结构我们该如何增加,更新和删除一个节点呢?
增加一个节点一般有两种方法:
第一种,保留原有的name 和parent结构,用老方法向数据中添加数据,每增加一条数据以后使用rebuild_tree函数对整个结构重新进行一次编号。
第 二种,效率更高的办法是改变所有位于新节点右侧的数值。举例来说:我们想增加一种新的水果”Strawberry”(草莓)它将成为”Red”节点的最后 一个子节点。首先我们需要为它腾出一些空间。”Red”的右值应当从6改成8,”Yellow 7-10 “的左右值则应当改成 9-12。 依次类推我 们可以得知,如果要给新的值腾出空间需要给所有左右值大于5的节点 (5 是”Red”最后一个子节点的右值) 加上2。 所以我们这样进行数据库操 作:
UPDATE tree SET rgt=rgt+2 WHERE rgt>;5;
UPDATE tree SET lft=lft+2 WHERE lft>;5;
这样就为新插入的值腾出了空间,现在可以在腾出的空间里建立一个新的数据节点了, 它的左右值分别是6和7
INSERT INTO tree SET lft=6, rgt=7, name=’Strawberry’;
再做一次查询看看吧!怎么样?很快吧。
好了,现在你可以用两种不同的方法设计你的多级数据库结构了,采用何种方式完全取决于你个人的判断,但是对于层次多数量大的结构我更喜欢第二种方法。如果查询量较小但是需要频繁添加和更新的数据,则第一种方法更为简便。
另外,如果数据库支持的话 你还可以将rebuild_tree()和 腾出空间的操作写成数据库端的触发器函数, 在插入和更新的时候自动执行, 这样可以得到更好的运行效率, 而且你添加新节点的SQL语句会变得更加简单。
相关推荐
总之,预排序遍历树算法在数据存储冗余性、树型结构直观性、快速获取祖谱路径等方面有其独特的优势,但其牺牲写性能的缺点也需要通过合理的算法设计和优化来解决。通过深入研究树型结构数据存储和操作算法,以及关系...
ASP树型无限级菜单源码是一种在Web应用中组织和展示数据的有效方式,尤其适用于具有层级关系的数据,如目录结构、组织架构或者类别分类。在ASP(Active Server Pages)环境中,这种菜单允许用户以图形化的树状结构...
JavaScript树型无限级菜单是一种常见的前端交互设计,用于构建层级结构的数据展示,如导航系统、组织架构或文件系统。在网页应用中,这种菜单能够帮助用户以清晰、可折叠的方式浏览复杂的层次信息。本文将深入探讨...
在这个场景中,我们讨论的是一个支持无限级分类的js树,这意味着它可以处理任意深度的层级结构,用户可以根据需要添加任意多的子节点。 该实现基于组件模式,组件模式是软件工程中的一种设计模式,它将功能封装到...
在构建树型结构数据,例如在PHP和MySQL的环境下实现无限分类,有两种常见的方法:领接表(Adjacency List)和预排序遍历树(Modified Preorder Tree Traversal,MPTT)。这两种方法各有优缺点,适用于不同的场景。 ...
在PHP编程中,无限级树型分类是一种常见的数据结构处理方式,尤其在网站内容管理系统、电商产品分类或者用户权限管理等场景中应用广泛。无限级树型分类允许我们构建一个可扩展的层级结构,其中每个节点都可以有任意...
给出二叉树的介绍及存储方法和遍历方法.专业课件,非常详细
【Ajax + ASP 构建无限级分类树型结构】 在Web开发中,构建无限级分类树型结构是一项常见的需求,特别是在内容管理系统或者电子商务网站中,用于管理产品分类或文章分类。Ajax(Asynchronous JavaScript and XML)...
在IT领域,尤其是在前端开发中,无限级分类和树型菜单是常见的数据组织方式,尤其在网站导航、文件管理、数据库结构设计等场景下尤为重要。本文将深入探讨这些概念,并结合"js无限级分类源码",即JavaScript实现的...
树型框超快排序是一种结合了树结构与快速排序算法的优化策略。快速排序是一种基于分治思想的排序算法,由C.A.R. Hoare在1960年提出,其基本步骤包括选取一个基准元素、划分数组以及递归地对划分后的子数组进行排序。...
本文将深入探讨无限级树形结构的概念、实现方式,以及如何结合Asp.Net技术,利用TreeView控件进行展示,并涵盖增、删、改、排序等操作。 无限级树形结构是一种数据结构,它允许节点有任意数量的子节点,形成一个...
本文将深入探讨如何利用ASP(Active Server Pages)和ACCESS数据库实现一个二叉树结构的无限级分类系统,该系统支持增、删、改、查以及排序等核心功能。我们将讨论相关概念、实现原理以及具体的代码实践。 首先,...
在IT领域,尤其是在Web开发中,构建一个无限级分类树型菜单是一项常见的需求。这主要应用于网站导航、后台管理系统以及大型数据分类等场景。本文将深入探讨如何利用JSP(JavaServer Pages)技术来实现这样的功能。 ...
树型结构算法树型结构算法树型结构算法树型结构算法
在C# .NET开发中,实现无限级分类和树型分类是常见的需求,尤其是在构建具有层级结构的数据模型,如组织架构、目录结构或商品分类时。这类问题通常涉及到递归和数据存储,本教程将围绕如何使用C# .NET来处理这种场景...
树型结构是一类重要的非线性数据结构,而二叉树是最为重要,最为常用的类型。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可以用树来形象表示。树在计算机领域中也得到广泛应用,如在编译程序...
易语言树型框排序源码,树型框排序,SortChildren,TreeView_GetChild,TreeView_GetNextSibling,取文本地址,SendMessage,CompareFunc,SendMessageTree,SendMessageA,lstrcmpA
6. 层级遍历:在处理无限级树时,需要遍历所有节点,例如在初始化时设置默认选中项,或者在提交选择时检查所有选中项。这通常需要深度优先搜索(DFS)或广度优先搜索(BFS)算法。 7. 状态管理:为了维护整个树的...
树,树型空件,树型菜单用法大全(C# .NET),树,树型空件,树型菜单用法大全(C# .NET)树型菜单,树的遍历,树的拖动,树的动态加载,树与菜单的相相互转化,增加树的节点.(treeview,c#,.net,menuStrip)树,树型空件,树型...