- 浏览: 246009 次
-
文章分类
最新评论
虽说现在用Eclipse下开发Hadoop程序很方便了,但是命令行方式对于小程序开发验证很方便。这是初学hadoop时的笔记,记录下来以备查。
1. 经典的WordCound程序(WordCount.java),可参见 hadoop0.18文档
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCount extends Configured implements Tool {
public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}
/**
* A reducer class that just emits the sum of the input values.
*/
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
static int printUsage() {
System.out.println("wordcount [-m <maps>] [-r <reduces>] <input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
/**
* The main driver for word count map/reduce program. Invoke this method to
* submit the map/reduce job.
*
* @throws IOException
* When there is communication problems with the job tracker.
*/
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName("wordcount");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();
for (int i = 0; i < args.length; ++i) {
try {
if ("-m".equals(args[i])) {
conf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if ("-r".equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else {
other_args.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of "
+ args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from "
+ args[i - 1]);
return printUsage();
}
}
// Make sure there are exactly 2 parameters left.
if (other_args.size() != 2) {
System.out.println("ERROR: Wrong number of parameters: "
+ other_args.size() + " instead of 2.");
return printUsage();
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCount extends Configured implements Tool {
public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}
/**
* A reducer class that just emits the sum of the input values.
*/
public static class Reduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
static int printUsage() {
System.out.println("wordcount [-m <maps>] [-r <reduces>] <input> <output>");
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
/**
* The main driver for word count map/reduce program. Invoke this method to
* submit the map/reduce job.
*
* @throws IOException
* When there is communication problems with the job tracker.
*/
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName("wordcount");
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();
for (int i = 0; i < args.length; ++i) {
try {
if ("-m".equals(args[i])) {
conf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if ("-r".equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else {
other_args.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println("ERROR: Integer expected instead of "
+ args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println("ERROR: Required parameter missing from "
+ args[i - 1]);
return printUsage();
}
}
// Make sure there are exactly 2 parameters left.
if (other_args.size() != 2) {
System.out.println("ERROR: Wrong number of parameters: "
+ other_args.size() + " instead of 2.");
return printUsage();
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
2. 保证hadoop集群是配置好了的,单机的也好。新建一个目录,比如 /home/admin/WordCount
编译WordCount.java程序。
javac -classpath /home/admin/hadoop/hadoop-0.19.1-core.jar WordCount.java -d /home/admin/WordCount
3. 编译完后在/home/admin/WordCount目录会发现三个class文件 WordCount.class,WordCount$Map.class,WordCount$Reduce.class。
cd 进入 /home/admin/WordCount目录,然后执行:
jar cvf WordCount.jar *.class
就会生成 WordCount.jar 文件。
4. 构造一些输入数据
input1.txt和input2.txt的文件里面是一些单词。如下:
[admin@host WordCount]$ cat input1.txt
Hello, i love china
are you ok?
[admin@host WordCount]$ cat input2.txt
hello, i love word
You are ok
Hello, i love china
are you ok?
[admin@host WordCount]$ cat input2.txt
hello, i love word
You are ok
在hadoop上新建目录,和put程序运行所需要的输入文件:
hadoop fs -mkdir /tmp/input
hadoop fs -mkdir /tmp/output
hadoop fs -put input1.txt /tmp/input/
hadoop fs -put input2.txt /tmp/input/
hadoop fs -mkdir /tmp/output
hadoop fs -put input1.txt /tmp/input/
hadoop fs -put input2.txt /tmp/input/
5. 运行程序,会显示job运行时的一些信息。
[admin@host WordCount]$ hadoop jar WordCount.jar WordCount /tmp/input /tmp/output
10/09/16 22:49:43 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
10/09/16 22:49:43 INFO mapred.FileInputFormat: Total input paths to process :2
10/09/16 22:49:43 INFO mapred.JobClient: Running job: job_201008171228_76165
10/09/16 22:49:44 INFO mapred.JobClient: map 0% reduce 0%
10/09/16 22:49:47 INFO mapred.JobClient: map 100% reduce 0%
10/09/16 22:49:54 INFO mapred.JobClient: map 100% reduce 100%
10/09/16 22:49:55 INFO mapred.JobClient: Job complete: job_201008171228_76165
10/09/16 22:49:55 INFO mapred.JobClient: Counters: 16
10/09/16 22:49:55 INFO mapred.JobClient: File Systems
10/09/16 22:49:55 INFO mapred.JobClient: HDFS bytes read=62
10/09/16 22:49:55 INFO mapred.JobClient: HDFS bytes written=73
10/09/16 22:49:55 INFO mapred.JobClient: Local bytes read=152
10/09/16 22:49:55 INFO mapred.JobClient: Local bytes written=366
10/09/16 22:49:55 INFO mapred.JobClient: Job Counters
10/09/16 22:49:55 INFO mapred.JobClient: Launched reduce tasks=1
10/09/16 22:49:55 INFO mapred.JobClient: Rack-local map tasks=2
10/09/16 22:49:55 INFO mapred.JobClient: Launched map tasks=2
10/09/16 22:49:55 INFO mapred.JobClient: Map-Reduce Framework
10/09/16 22:49:55 INFO mapred.JobClient: Reduce input groups=11
10/09/16 22:49:55 INFO mapred.JobClient: Combine output records=14
10/09/16 22:49:55 INFO mapred.JobClient: Map input records=4
10/09/16 22:49:55 INFO mapred.JobClient: Reduce output records=11
10/09/16 22:49:55 INFO mapred.JobClient: Map output bytes=118
10/09/16 22:49:55 INFO mapred.JobClient: Map input bytes=62
10/09/16 22:49:55 INFO mapred.JobClient: Combine input records=14
10/09/16 22:49:55 INFO mapred.JobClient: Map output records=14
10/09/16 22:49:55 INFO mapred.JobClient: Reduce input records=14
10/09/16 22:49:43 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
10/09/16 22:49:43 INFO mapred.FileInputFormat: Total input paths to process :2
10/09/16 22:49:43 INFO mapred.JobClient: Running job: job_201008171228_76165
10/09/16 22:49:44 INFO mapred.JobClient: map 0% reduce 0%
10/09/16 22:49:47 INFO mapred.JobClient: map 100% reduce 0%
10/09/16 22:49:54 INFO mapred.JobClient: map 100% reduce 100%
10/09/16 22:49:55 INFO mapred.JobClient: Job complete: job_201008171228_76165
10/09/16 22:49:55 INFO mapred.JobClient: Counters: 16
10/09/16 22:49:55 INFO mapred.JobClient: File Systems
10/09/16 22:49:55 INFO mapred.JobClient: HDFS bytes read=62
10/09/16 22:49:55 INFO mapred.JobClient: HDFS bytes written=73
10/09/16 22:49:55 INFO mapred.JobClient: Local bytes read=152
10/09/16 22:49:55 INFO mapred.JobClient: Local bytes written=366
10/09/16 22:49:55 INFO mapred.JobClient: Job Counters
10/09/16 22:49:55 INFO mapred.JobClient: Launched reduce tasks=1
10/09/16 22:49:55 INFO mapred.JobClient: Rack-local map tasks=2
10/09/16 22:49:55 INFO mapred.JobClient: Launched map tasks=2
10/09/16 22:49:55 INFO mapred.JobClient: Map-Reduce Framework
10/09/16 22:49:55 INFO mapred.JobClient: Reduce input groups=11
10/09/16 22:49:55 INFO mapred.JobClient: Combine output records=14
10/09/16 22:49:55 INFO mapred.JobClient: Map input records=4
10/09/16 22:49:55 INFO mapred.JobClient: Reduce output records=11
10/09/16 22:49:55 INFO mapred.JobClient: Map output bytes=118
10/09/16 22:49:55 INFO mapred.JobClient: Map input bytes=62
10/09/16 22:49:55 INFO mapred.JobClient: Combine input records=14
10/09/16 22:49:55 INFO mapred.JobClient: Map output records=14
10/09/16 22:49:55 INFO mapred.JobClient: Reduce input records=14
6. 查看运行结果
[admin@host WordCount]$ hadoop fs -ls /tmp/output/
Found 2 items
drwxr-x--- - admin admin 0 2010-09-16 22:43 /tmp/output/_logs
-rw-r----- 1 admin admin 102 2010-09-16 22:44 /tmp/output/part-00000
[admin@host WordCount]$ hadoop fs -cat /tmp/output/part-00000
Hello, 1
You 1
are 2
china 1
hello, 1
i 2
love 2
ok 1
ok? 1
word 1
you 1
Found 2 items
drwxr-x--- - admin admin 0 2010-09-16 22:43 /tmp/output/_logs
-rw-r----- 1 admin admin 102 2010-09-16 22:44 /tmp/output/part-00000
[admin@host WordCount]$ hadoop fs -cat /tmp/output/part-00000
Hello, 1
You 1
are 2
china 1
hello, 1
i 2
love 2
ok 1
ok? 1
word 1
you 1
发表评论
-
大数据方面的文章
2013-07-29 17:01 869http://bbs.e-works.net.cn/forum ... -
Apache Pig中文教程(进阶)
2013-05-13 17:18 1768引自http://www.codelast.com/?p=42 ... -
hadoop视频
2013-05-10 09:35 804http://pan.baidu.com/share/li ... -
Apache Pig的一些基础概念及用法总结(1
2013-05-08 16:01 1107引自http://www.codelast.com/?p=3 ... -
hadoop动态增加删除节点
2013-04-28 09:54 1192在master的conf/hdfs-site.xml中加入 ... -
hadoop 比较好的博客
2013-04-27 17:35 733http://dongxicheng.org 好的书 h ... -
Hadoop错误一的解决猜测
2013-04-26 10:29 845如果出现:java.lang.NullPointerExc ... -
Reduce作业运行时错误:Too many fetch-failures
2013-04-24 21:19 5795root@ubuntu:/usr/local/hadoop# ... -
MultipleOutputFormat和MultipleOutputs
2013-01-04 17:26 991引自http://www.cnblogs.com/liangz ... -
hadoop各种输入方法(InputFormat)汇总
2013-01-04 17:02 1425引自http://www.blogjava.net/shenh ... -
Hadoop运行报错: java.lang.ClassNotFoundException解决方法
2012-12-27 16:44 12812在创建自定义的Mapper时候,编译正确,但上传到集群执 ... -
hadoop-1.1.0 rpm + centos 6.3 64 + JDK7 搭建全分布式集群的方法
2012-12-22 20:45 1258引自 http://blog.csdn.net/ireland ... -
HADOOP中DATANODE无法启动
2012-12-22 20:43 963摘要:该文档解决了多次格式化文件系统后,datanode ... -
Hadoop HDFS 编程
2012-12-18 17:38 879引自http://blog.csdn.net/lmc ... -
HDFS之SequenceFile和MapFile
2012-12-17 11:37 956引自http://blog.csdn.net/javam ... -
Hadoop -【IO专题-序列化机制】
2012-12-17 10:32 1096引自http://blog.sina.com.cn/s/ ... -
hadoop问题Type mismatch in value from map解决方法
2012-12-13 10:49 874hadoop问题Type mismatch in ... -
hadoop hbase svn site
2012-12-13 10:49 1001hadoop hbase svn site ... -
hadoop项目svn地址
2012-12-11 18:11 1060http://svn.apache.org/repos/asf ... -
在Eclipse中导入hadoop
2012-12-11 18:03 12430. 准备 (1) 需要有gcc、autoconf、 ...
相关推荐
### Hadoop运行WordCount实例详解 #### 一、Hadoop简介与WordCount程序的重要性 Hadoop 是一个由Apache基金会所开发的分布式系统基础架构。它能够处理非常庞大的数据集,并且能够在集群上运行,通过将大数据分割...
### Ubuntu上运行Hadoop WordCount实例详解 #### 一、环境搭建与配置 在Ubuntu系统上部署并运行Hadoop WordCount实例,首先需要确保已经安装了Hadoop环境,并且版本为hadoop-0.20.2。此版本较旧,主要用于教学或...
运行WordCount程序时,Hadoop会自动将数据分发到集群的各个节点上,每个节点上的TaskTracker会执行对应的Map任务。当Map任务完成,中间结果会被排序和分区,然后传递给Reduce任务。Reduce任务最终将结果写回到HDFS,...
这是一个wordcount的一个简单实例jar包,仅仅用来做测试。 map类:org.apache.hadoop.wordcount.WordCountMapReduce$WordCountMapper reduce类 org.apache.hadoop.wordcount.WordCountMapReduce$WordCountReducer
总之,Hadoop的WordCount实例是学习和理解分布式计算的一个重要起点,它展示了如何利用Hadoop框架进行数据处理,同时也为更复杂的分布式应用程序开发提供了基础。通过对WordCount的深入研究,我们可以更好地理解和...
总结来说,"hadoop实现wordcount"是一个利用Hadoop的MapReduce模型处理大规模文本数据的实例,不仅可以统计词频,还可以扩展到情感分析等复杂任务。这个过程涉及到数据分片、并行处理、结果聚合等多个关键步骤,对于...
在标题中的"WordCount2_hadoopwordcount_"可能指的是Hadoop WordCount的第二个版本,通常是在Hadoop 2.x环境下运行。这个程序的核心任务是对输入文本进行分词,统计每个单词出现的次数,并将结果输出。在这个过程中...
### Hadoop-1.2.1 运行WordCount实例详解 #### 一、环境准备与搭建 在开始运行WordCount实例之前,首先确保已经按照之前的步骤完成了Hadoop-1.2.1环境的搭建。这包括但不限于安装JDK、配置Hadoop环境变量以及设置...
学习Hadoop WordCount实例,你可以深入了解以下知识点: 1. Hadoop环境搭建:包括安装Hadoop,配置Hadoop集群(单机或伪分布式),以及设置Hadoop环境变量。 2. MapReduce编程模型:理解Map和Reduce函数的工作原理...
Hadoop环境搭建及wordcount实例运行.pdf
Hadoop的WordCount实例代码解析 Hadoop的WordCount实例代码是Hadoop MapReduce编程模型的经典示例,通过对大文件中的单词出现次数的统计,展示了MapReduce编程模型的基本思想和实现细节。 Hadoop MapReduce编程...
通过这个Wordcount实例,我们可以学习到Hadoop MapReduce的基本工作原理,同时也可以了解到如何在Java中编写Hadoop程序。这只是一个基本的应用,实际的Hadoop项目可能会涉及更复杂的逻辑和优化,如分块、分区、压缩...
3. **WordCount示例**:解释如何在Eclipse中创建和运行WordCount程序,提供了一个理解Hadoop MapReduce编程模型的实例。 4. **文档与截图**:提供的文档和截图帮助用户更好地理解每个步骤,确保能够顺利完成安装和...
通过上述介绍,我们可以了解到在Hadoop集群中运行WordCount程序的基本流程。尽管WordCount示例非常简单,但它却是理解Hadoop工作原理的一个很好的起点。对于想要深入学习Hadoop的开发者来说,掌握WordCount程序是...
通过WordCount实例,我们可以了解Hadoop的分布式计算原理;通过文件上传,我们能掌握HDFS的读写操作。这些知识对于任何想要进入Hadoop领域的开发者来说都是至关重要的起点。在实际应用中,开发者可以根据需求对这些...
### Hadoop学习——运行第一个Hadoop实例 在深入探讨如何运行Hadoop的第一个实例之前,我们需要先了解Hadoop的基本概念以及其工作原理。Hadoop是一种分布式计算框架,它允许用户处理和存储大量的数据集。Hadoop的...
本篇文章将详细介绍Hadoop Eclipse插件的安装与使用,以及通过Eclipse创建和运行Hadoop实例程序的方法。 一、Hadoop Eclipse插件安装 1. 下载Hadoop Eclipse插件:通常,你可以从Apache Hadoop官方网站或第三方...
"Hadoop环境搭建及wordcount实例运行"文档将带你了解Hadoop的基本工作流程,通过运行经典的WordCount程序来实践。WordCount是Hadoop入门的经典例子,它统计文本文件中每个单词出现的次数。你将学习如何创建MapReduce...
代码是基于windows系统下搭建eclipse+hadoop2.8.3开发实例。使用eclipse直接导入代码使用的前提是,需要在本地配置要hadoop2.8.3,本代码亲测可用,能够详细地统计出dataNode下面的file3.txt文件中单词的个数。