- 浏览: 43726 次
- 性别:
- 来自: 上海
-
文章分类
最新评论
在上一节中,
我们已经了解了Java多线程编程中常用的关键字synchronized,以及与之相关的对象锁机制。这一节中,让
我们一起来认识JDK 5中新引入的并发框架中的锁机制
。
我想很多购买了《Java程序员面试宝典》之类图书的朋友一定对下面 这个面试题感到非常熟悉:
问:请对比synchronized与java.util.concurrent.locks.Lock 的异同。
答案:主要相同点:Lock能完成synchronized所实现的所有功能
主要不同点:Lock有比synchronized更精确的线程语义和更好的性能。synchronized会自动释放 锁,而Lock一定要求程序员手工释放,并且必须在finally从句中释放。
恩,让我们先鄙视一下应试教育。
言归正传,我们先来看一个多线程程序。它使用多个线程对一个Student对象进行访问,改变其中的变量值。 我们首先用传统的synchronized 机制来实现它:
我想很多购买了《Java程序员面试宝典》之类图书的朋友一定对下面 这个面试题感到非常熟悉:
问:请对比synchronized与java.util.concurrent.locks.Lock 的异同。
答案:主要相同点:Lock能完成synchronized所实现的所有功能
主要不同点:Lock有比synchronized更精确的线程语义和更好的性能。synchronized会自动释放 锁,而Lock一定要求程序员手工释放,并且必须在finally从句中释放。
恩,让我们先鄙视一下应试教育。
言归正传,我们先来看一个多线程程序。它使用多个线程对一个Student对象进行访问,改变其中的变量值。 我们首先用传统的synchronized 机制来实现它:
package sky.cn.test4; import java.util.Random; public class ThreadDemo implements Runnable { Student student = new Student(); int count = 0; public void accessStudent() { String currentThreadName = Thread.currentThread().getName(); long startTime = System.currentTimeMillis(); System.out.println(currentThreadName + " is running!"); synchronized (this) { //(1)使用同一个ThreadDemo对象作为同步锁 System.out.println(currentThreadName + " got lock1@Step1!"); try { count++; Thread.sleep(5000); } catch (Exception e) { e.printStackTrace(); } finally { System.out.println(currentThreadName + " first Reading count: " + count); } System.out.println(currentThreadName + " release lock1@Step1!"); } synchronized (this) { //(2)使用同一个ThreadDemo对象作为同步锁 System.out.println(currentThreadName + " got lock2@Step2!"); try { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread " + currentThreadName + " set age to: " + age); this.student.setAge(age); System.out.println("thread " + currentThreadName + " first read age is: " + this.student.getAge()); Thread.sleep(5000); } catch (Exception e) { e.printStackTrace(); } finally { System.out.println("thread " + currentThreadName + " second read age is: " + this.student.getAge()); } System.out.println(currentThreadName + " release lock2@step2!"); long endTime = System.currentTimeMillis(); System.out.println("thread " + currentThreadName + " cost " + (endTime - startTime)/1000 + " seconds!"); } } public void run() { accessStudent(); } public static void main(String[] args) { ThreadDemo td = new ThreadDemo(); Thread t1 = new Thread(td, "a"); Thread t2 = new Thread(td, "b"); Thread t3 = new Thread(td, "c"); t1.start(); t2.start(); t3.start(); } class Student { private int age = 0; public int getAge() { return age; } public void setAge(int age) { this.age = age; } } }结果:
a is running! a got lock1@Step1! b is running! c is running! a first Reading count: 1 a release lock1@Step1! c got lock1@Step1! c first Reading count: 2 c release lock1@Step1! c got lock2@Step2! thread c set age to: 80 thread c first read age is: 80 thread c second read age is: 80 c release lock2@step2! thread c cost 15 seconds! b got lock1@Step1! b first Reading count: 3 b release lock1@Step1! b got lock2@Step2! thread b set age to: 73 thread b first read age is: 73 thread b second read age is: 73 b release lock2@step2! thread b cost 25 seconds! a got lock2@Step2! thread a set age to: 80 thread a first read age is: 80 thread a second read age is: 80 a release lock2@step2! thread a cost 30 seconds!
显然,在这个程序中,由于两段synchronized块使用了同样的对象做为对象锁
,所以JVM优先使刚刚释放该锁的线程重新获得该
锁。这样,每个线程执行的时间是10秒钟,并且要彻底把两个同步块的动作执行完毕,才能释放对象锁。这样,加起来一共是
30秒。
我想一定有人会说:如果两段synchronized块采用两个不同的对象锁,就可以提高程序的并发性,并且,这
两个对象锁应该选择那些被所有线程所共享的对象。
1. 它无法中断一个正在等候获得锁的线程,也无法通过投票得到锁,如果不想等下去,也就没法得到锁。
2.synchronized 块对于锁的获得和释放是在相同的堆栈帧中进行的。多数情况下,这没问题(而且与异常处理交互得很 好),但是,确实存在一些更适合使用 非块结构锁定的情况。
对象锁的获得和释放是由手工编码完成的,
那么好。我们把第二个同步块中的对象锁改为student
(此处略去代码,读
者自己修改),程序运行结果为:
a is running! a got lock1@Step1! b is running! c is running! a first Reading count: 1 a release lock1@Step1! a got lock2@Step2! c got lock1@Step1! thread a set age to: 32 thread a first read age is: 32 c first Reading count: 2 c release lock1@Step1! b got lock1@Step1! thread a second read age is: 32 a release lock2@step2! thread a cost 10 seconds! c got lock2@Step2! thread c set age to: 86 thread c first read age is: 86 b first Reading count: 3 b release lock1@Step1! thread c second read age is: 86 c release lock2@step2! thread c cost 15 seconds! b got lock2@Step2! thread b set age to: 40 thread b first read age is: 40 thread b second read age is: 40 b release lock2@step2! thread b cost 20 seconds!从 修改后的运行结果来看,显然,由于同步块的对象锁不同了,
三个线程的执行顺序也发生了变化。在一个线程释放第一个同步块的同步锁之
后,第二个线程就可以进入第一个同步块,而此时,第一个线程可以继续执行第二个同步块。这样,整个执行过程中,有10秒钟
的时间是两个线程同时工作
的。另外十秒钟分别是第一个线程执行第一个同步块的动作和最后一个线
程执行第二个同步块的动作
。相比较第一
个例程,整个程序的运行时间节省了1/3。细心的读者不难总结出优化前后的执行时间比例公式:(n+1)/
2n
,其中n为
线程数
。如果线程数趋近于正无穷,则程序执行效率的提高会接近50%。而如果一个线程的执行阶段被分割成m个
synchronized
块
,并且每个同步块使用不同的对象锁,而同步块的执行时间恒定,则执行时间比例公式可以写作:((m-
1)n+1)/
mn
那么当m趋于无穷大时,线程数n趋近于无穷大,则程序执行效率的提升几乎可以达到100%。(显然,我
们不能按照理想情况下的数学推导来给BOSS发报告,不过通过这样的数学推导,至少我们看到了提高多线程程序并发性的一种方案,而
这种方案至少具备数学上的可行性理论支持。)
可见,使用不同的对象锁,在不同的同步块中完成任务,
可以使性能大大提升。
很多人看到这不禁要问:这和新的Lock框 架有什么关系?
别着急。我们这就来看一看。
synchronized块 的确不错,但是他有一些功能性的限制 :
很多人看到这不禁要问:这和新的Lock框 架有什么关系?
别着急。我们这就来看一看。
synchronized块 的确不错,但是他有一些功能性的限制 :
1. 它无法中断一个正在等候获得锁的线程,也无法通过投票得到锁,如果不想等下去,也就没法得到锁。
2.synchronized 块对于锁的获得和释放是在相同的堆栈帧中进行的。多数情况下,这没问题(而且与异常处理交互得很 好),但是,确实存在一些更适合使用 非块结构锁定的情况。
java.util.concurrent.lock 中的 Lock 框架是锁定的一个抽象,它允许把锁定的实现作为 Java
类,而不是作为语言的特性来实现。这就为 Lock 的多种实现留下了空间,各种实现可能有不同的调度算法、性能特性或者锁定语义。
JDK 官方文档中提到:
ReentrantLock是“一个可重入的互斥锁 Lock ,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大。
ReentrantLock 将由最近成功获得锁,并且还没有释放该锁的线程所拥有。当锁没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁并返回。如果当前线程已经拥有该锁,此方法将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查 此情况是否发生。 ”
简单来说,ReentrantLock有一个与锁相关的获取计 数器 ,如果拥有锁的某个线程再次得到锁 ,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放 。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个 synchronized 块时,才释放锁。
JDK 官方文档中提到:
ReentrantLock是“一个可重入的互斥锁 Lock ,它具有与使用 synchronized 方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大。
ReentrantLock 将由最近成功获得锁,并且还没有释放该锁的线程所拥有。当锁没有被另一个线程所拥有时,调用 lock 的线程将成功获取该锁并返回。如果当前线程已经拥有该锁,此方法将立即返回。可以使用 isHeldByCurrentThread() 和 getHoldCount() 方法来检查 此情况是否发生。 ”
简单来说,ReentrantLock有一个与锁相关的获取计 数器 ,如果拥有锁的某个线程再次得到锁 ,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放 。这模仿了 synchronized 的语义;如果线程进入由线程已经拥有的监控器保护的 synchronized 块,就允许线程继续进行,当线程退出第二个(或者后续) synchronized 块的时候,不释放锁,只有线程退出它进入的监控器保护的第一个 synchronized 块时,才释放锁。
ReentrantLock 类(重入锁)实现了 Lock ,它拥有与 synchronized
相同的并发性和内存语义,但是添加了类似锁投票、定时锁等候和可中断锁等候的一些特性
。此外,它还提供了在激烈争用情况下更佳的性
能
。(换句话说,当许多线程都想访问共享资源时,JVM 可以花更少的时候来调度线程,把更多时间用在执行线程上。)
我们把 上面的例程改造一下:
我们把 上面的例程改造一下:
package sky.cn.test4; import java.util.Random; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class ThreadDemo implements Runnable { Student student = new Student(); int count = 0; Lock lock1 = new ReentrantLock(false); Lock lock2 = new ReentrantLock(false); public void accessStudent() { String currentThreadName = Thread.currentThread().getName(); long startTime = System.currentTimeMillis(); System.out.println(currentThreadName + " is running!"); lock1.lock(); //使用重入锁 System.out.println(currentThreadName + " got lock1@Step1!"); try { count++; Thread.sleep(5000); } catch (Exception e) { e.printStackTrace(); } finally { System.out.println(currentThreadName + " first Reading count: " + count); lock1.unlock(); System.out.println(currentThreadName + " release lock1@Step1!"); } lock2.lock(); //使用另外一个不同的重入锁 System.out.println(currentThreadName + " got lock2@Step2!"); // /* // * 注:如果在此处抛出异常,将不会释放lock2的锁,需要确定开启锁和try之前不会出现异常, // * 否则就全包到try中去 // */ // if ("a".equals(currentThreadName)) { // throw new RuntimeException("thread a throw an exception!"); // } try { Random random = new Random(); int age = random.nextInt(100); System.out.println("thread " + currentThreadName + " set age to: " + age); this.student.setAge(age); System.out.println("thread " + currentThreadName + " first read age is: " + this.student.getAge()); Thread.sleep(5000); } catch (Exception e) { e.printStackTrace(); } finally { System.out.println("thread " + currentThreadName + " second read age is: " + this.student.getAge()); lock2.unlock(); System.out.println(currentThreadName + " release lock2@step2!"); long endTime = System.currentTimeMillis(); System.out.println("thread " + currentThreadName + " cost " + (endTime - startTime)/1000 + " seconds!"); } } public void run() { accessStudent(); } public static void main(String[] args) { ThreadDemo td = new ThreadDemo(); Thread t1 = new Thread(td, "a"); Thread t2 = new Thread(td, "b"); Thread t3 = new Thread(td, "c"); t1.start(); t2.start(); t3.start(); } class Student { private int age = 0; public int getAge() { return age; } public void setAge(int age) { this.age = age; } } }从上面这个 程序我们看到:
对象锁的获得和释放是由手工编码完成的,
所以获得锁和释放锁的时机
比使用同步块具有更好的可定制性
。并
且通过程序的运行结果(运行结果忽略,请读者根据例程自行观察),我们可以发现,和使用同步块的版本相比,结果是相同的
。
这说明两点问题:
1. 新的ReentrantLock的确实现了和同步块相同的语义功能。而对象锁的获得和释放 都可以由编码 人员自行掌握 。
1. 新的ReentrantLock的确实现了和同步块相同的语义功能。而对象锁的获得和释放 都可以由编码 人员自行掌握 。
2. 使用新的ReentrantLock,免去
了为同步块放置合适的对象锁
所要进行的考量。
3. 使用新的ReentrantLock,最佳的实践就是结合try/finally块来进行。在try块之前使用lock方法 ,而 在finally中使用unlock方法 。
3. 使用新的ReentrantLock,最佳的实践就是结合try/finally块来进行。在try块之前使用lock方法 ,而 在finally中使用unlock方法 。
细心的读者又发现了:
在我们的例程中,创建ReentrantLock实例的时候,
在我们的例程中,创建ReentrantLock实例的时候,
我们的构造函数里面传递的参数是false。那么如果传递
true又回是什么结果呢?这里面又有什么奥秘呢?
请看本节的续 ———— Fair or Unfair? It is a question...
请看本节的续 ———— Fair or Unfair? It is a question...
发表评论
-
Java 多线程同步问题的探究(三、Lock来了,大家都让开【2. Fair or Unfair? It is a question...】)
2012-08-15 16:12 624让我们继续前面有关ReentrantLock的话题。 首先, ... -
Java 多线程同步问题的探究(五、你有我有全都有—— ThreadLocal如何解决并发安全性?)【更新重要补疑】
2012-08-15 15:17 726前面我们介绍了Java当中 ... -
Java 多线程同步问题的探究(四、协作,互斥下的协作——Java多线程协作(wait、notify、notifyAll))
2012-08-15 10:38 995Java监视器支持两种线程:互斥和协作 。 前面我 ... -
Java 多线程同步问题的探究(二、给我一把锁,我能创造一个规矩)
2012-08-13 15:09 699在上一篇中,我们讲到 ... -
Java多线程同步问题的探究(一、线程的先来后到)
2012-08-13 14:46 522众所周知,在Java多线程编程中,一个非常重要的方面就是线程的 ... -
ThreadLocal源码读后感总结
2012-04-23 14:47 10651.关联类 ThreadLocal: 线程局 ...
相关推荐
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
log凑字数 12345678910
【毕业设计】java+springboot+vue电影评论网站系统设计与实现(完整前后端+mysql+说明文档+LunW).zip
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
双向全桥LLC谐振变换器与非对称拓扑的双向模型仿真研究:正向LLC与反向LC的变频控制闭环模型在Matlab Simulink及PLECS环境下的应用,双向全桥LLC谐振变换器:非对称拓扑与双向模型的Matlab Simulink及PLECS仿真研究,双向全桥LLC谐振变器仿真,非对称拓扑,双向模型 正向LLC,反向LC 采用变频控制的闭环模型 运行环境包括matlab simulink,plecs等 ~ ,双向全桥LLC谐振变换器仿真; 非对称拓扑; 双向模型; 变频控制; Matlab Simulink; PLECS。,双向全桥LLC谐振变换器仿真研究:非对称拓扑与变频控制模型
Jordan标准型行列互逆方法-程序求解
目前,在复杂任务(如Spider数据集上的文本到SQL转换)中,使用大型语言模型(LLMs)的微调模型和提示方法之间存在显著差距。为了提高LLMs在推理过程中的性能,我们研究了将任务分解为较小子任务的有效性。特别是,我们展示了将生成问题分解为子问题,并将这些子问题的解决方案输入给LLMs,可以显著提高其性能。我们的实验表明,这种方法使三个LLMs的简单少样本性能提高了大约10%,使其准确性接近或超过最先进水平(SOTA)。在Spider数据集的保留测试集中,以执行准确率为衡量标准,最先进水平是79.9,而使用我们方法的新最先进水平为85.3。我们的方法在上下文中学习,比许多经过深度微调的模型高出至少5%。此外,在BIRD基准测试中,我们的方法实现了55.9%的执行准确率,创下了该基准测试保留测试集的新最先进水平
程序可以参考,非常好的思路建设,完美!
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
# 基于FreeRTOS的ARM926EJS实验系统 ## 项目简介 本项目将FreeRTOS移植到基于ARM926EJ S CPU的ARM Versatile Platform Baseboard上,当前版本基于FreeRTOS 10.4.0,后续会随FreeRTOS新版本发布而更新。项目处于早期开发阶段,包含基础的演示任务,可用于学习和研究实时操作系统的基本功能与应用。 ## 项目的主要特性和功能 1. FreeRTOS内核移植实现FreeRTOS内核在ARM926EJ S架构上的移植,支持任务管理、信号量、队列、事件标志、互斥量等功能。 2. 中断处理具备中断服务例行程序,能处理中断事件并切换任务。 3. 任务切换有任务切换机制,支持手动切换和定时器中断切换。 4. 定时器管理可进行定时器的创建、启动、停止、查询等操作。 5. 内存管理实现动态内存分配与释放,支持运行时动态操作。
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
基于MATLAB Simulink R2015b的三电平中性点钳位(NPC)逆变器高级仿真模型,基于MATLAB Simulink R2015b的三电平中性点钳位(NPC)逆变器高级仿真模型,Three_Level_NPC_Inverter:基于MATLAB Simulink的三电平中性点钳位(NPC)逆变器仿真模型。 仿真条件:MATLAB Simulink R2015b,拿后前如需转成低版本格式请提前告知,谢谢。 ,核心关键词:Three_Level_NPC_Inverter; MATLAB Simulink; 仿真模型; R2015b版本。,基于MATLAB Simulink的三电平NPC逆变器仿真模型(R2015b版)
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
graph_searcher 机器人路径搜索
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
基于Matlab 2018版的三环PI参数自整定永磁同步电机伺服控制仿真模型:FOC矢量控制与PI参数调整的实践指南,好的,根据您提供的文字,我为您提炼出的标题为: 永磁同步电机伺服控制仿真:三环PI参数自整定Matlab模型构建及应用解析 这个标题满足了您的要求,既涵盖了主题“永磁同步电机伺服控制仿真三环PI参数自整定”,又提到了Matlab仿真模型的应用和解析,同时符合字数要求。,永磁同步电机伺服控制仿真三环PI参数自整定 永磁同步电机伺服控制仿真三环PI参数自整定 Matlab仿真模型 模型基于matlab 2018版本搭建。 模型适合伺服控制仿真初学者或工程师,学习电机控制中的PI参数调整问题。 模型包含如下内容: 1.FOC矢量控制算法,svpwm调制算法和永磁同步电机模型。 2.三环控制包含位置环、转速环、电流环;其中位置环采用P+前馈的复合控制;转速环采用PI控制;电流环采用PI控制+前馈解耦算法。 3.模型中只需要输入电机的电阻、电感、转动惯量等参数,就可以自动计算PI参数,实现比较好的控制效果。 4.提供相关参考lunwen和说明文档,方便读者进行学习。 ,核心