Given a set of N stamp values (e.g., {1 cent, 3 cents}) and an upper limit K to the number of stamps that can fit on an envelope, calculate the largest unbroken list of postages from 1 cent to M cents that can be created.
For example, consider stamps whose values are limited to 1 cent and 3 cents; you can use at most 5 stamps. It's easy to see how to assemble postage of 1 through 5 cents (just use that many 1 cent stamps), and successive values aren't much harder:
- 6 = 3 + 3
- 7 = 3 + 3 + 1
- 8 = 3 + 3 + 1 + 1
- 9 = 3 + 3 + 3
- 10 = 3 + 3 + 3 + 1
- 11 = 3 + 3 + 3 + 1 + 1
- 12 = 3 + 3 + 3 + 3
- 13 = 3 + 3 + 3 + 3 + 1.
However, there is no way to make 14 cents of postage with 5 or fewer stamps of value 1 and 3 cents. Thus, for this set of two stamp values and a limit of K=5, the answer is M=13.
The most difficult test case for this problem has a time limit of 3 seconds.
PROGRAM NAME: stamps
INPUT FORMAT
Line 1: | Two integers K and N. K (1 <= K <= 200) is the total number of stamps that can be used. N (1 <= N <= 50) is the number of stamp values. |
Lines 2..end: | N integers, 15 per line, listing all of the N stamp values, each of which will be at most 10000. |
SAMPLE INPUT (file stamps.in)
5 2 1 3
OUTPUT FORMAT
Line 1: | One integer, the number of contiguous postage values starting at 1 cent that can be formed using no more than K stamps from the set. |
SAMPLE OUTPUT (file stamps.out)
13
题意:
给出 K(1 ~ 200) 和 N(1 ~ 50),代表只能使用任意的 K 个数,有 N 种数选择,后给出 N 个数,输出一个最大的上限,使凑到 1 ~ M 中的任意一个数,只能用 K 个数且必须是 N 种数里面。
思路:
DP。dp [ i ] 代表能凑到 i 钱币的最少使用张数,当一遇到凑不到的情况就退出循环。
递推式子 dp [ i ] = min { dp [ i ] , dp [ i - mon [ j ] ] + 1 }。
AC:
/* TASK:stamps LANG:C++ ID:sum-g1 */ #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAX = 3000005; const int INF = 9999999; int dp[MAX], mon[55]; void init() { for (int i = 0; i < MAX; ++i) dp[i] = INF; dp[0] = 0; } int main() { freopen("stamps.in", "r", stdin); freopen("stamps.out", "w", stdout); init(); int k, n; scanf("%d%d", &k, &n); for (int i = 0; i < n; ++i) scanf("%d", &mon[i]); for (int i = 1; i < MAX; ++i) { for (int j = 0; j < n; ++j) { if (i - mon[j] >= 0 && (dp[i - mon[j]] + 1) <= k) { dp[i] = min(dp[i], dp[i - mon[j]] + 1); } } if(dp[i] == INF) { printf("%d\n", i - 1); break; } } return 0; }
相关推荐
2. **状态转移方程**:对于每个面值j的邮票,我们需要更新dp[i]的状态,如果i >= j,则dp[i]可以从dp[i - j] + 1或者dp[i]中取较小值,这样就确保了在使用或不使用面值j的邮票时,我们都能得到最小的邮票数量。...
《POJ 1010 Stamps:解题思路与陷阱分析》 POJ 1010,也被称为“邮票问题”,是编程竞赛中的一道经典题目,旨在考察参赛者的动态规划和数学思维能力。这个题目在编程爱好者中具有较高的知名度,因为它涉及到有趣的...
### ACM编程比赛入门题库知识点解析 #### 一、最少钱币数 ... if sum([1 for s in stamps if i >= s and dp[i-s]]) > m: dp[i] = False return dp ``` 以上是对题库中部分题目进行的知识点解析和技术要点总结。
5. **搜索**:包括深度优先搜索(DFS)和广度优先搜索(BFS),如"STAMPS"和"Anniversary Cake",可能需要设计递归或队列数据结构来解决问题。 6. **动态规划(DP)**:"Dividing"、"Jury Compromise"和"Sticks"等题目...
5. **动态规划(DP)**:动态规划是一种优化技术,用于求解最优化问题,例如STAMPS、Jury Compromise、Cable master等。DP常用于处理具有重叠子问题和最优子结构的问题,需要构造状态转移方程并存储中间结果。 6. *...
其中,动态规划(Dynamic Programming, DP)作为一种重要的算法思想,在USACO竞赛中占据了极其重要的地位。以下是对USACO中一些典型动态规划题目的心得与总结。 ### 一、典型题目分类与解法 #### 1. 背包问题及其...
14. **1016 Shoot-out 博弈+状态压缩DP** - **知识点**: 博弈论、状态压缩动态规划。 - **描述**: 分析射击游戏中的最优策略。 - **难度级别**: 高级。 - **解题思路**: 结合博弈论和状态压缩动态规划来解决问题...