- 浏览: 383013 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
lhbthanks:
楼主写的很多,也很实用,要是再增加一些描述就会更好了。
oracle 用户 从一个表空间 另一个表空间 -
wuhuajun:
private int _connectionMax = 51 ...
resin jboss 最大连接数设置 -
shixiaomu:
自己丁丁丁一下 学了忘忘了再学。。主要是应用场景太少
python -
shixiaomu:
我自己有了方案了java+rabbitmq_server-2. ...
hadoop hive zookeeper 还不够 -
shixiaomu:
看到这个帖子 羞愧极了 ,原来 我 09 年就想学 pytho ...
python
hive
Hive常用的SQL命令操作
创建表
hive> CREATE TABLE pokes (foo INT, bar STRING);
创建表并创建索引字段ds
hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);
显示所有表
hive> SHOW TABLES;
按正条件(正则表达式)显示表,
hive> SHOW TABLES '.*s';
表添加一列
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
更改表名
hive> ALTER TABLE events RENAME TO 3koobecaf;
删除列
hive> DROP TABLE pokes;
元数据存储
将文件中的数据加载到表中
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
加载本地数据,同时给定分区信息
hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
加载DFS数据 ,同时给定分区信息
hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
SQL 操作
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';
将查询数据输出至目录
hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';
将查询结果输出至本地目录
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;
选择所有列到本地目录
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
实际示例
创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
下载示例数据文件,并解压缩
wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz
加载数据到表中
LOAD DATA LOCAL INPATH 'ml-data/u.data'
OVERWRITE INTO TABLE u_data;
统计数据总量
SELECT COUNT(1) FROM u_data;
现在做一些复杂的数据分析
创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
import sys
import datetime
for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split('\t')
生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '\t'.join([userid, movieid, rating, str(weekday)])
使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';
//将python文件加载到系统
add FILE weekday_mapper.py;
将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)
FROM u_data;
SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;
Hive 的官方文档中对查询语言有了很详细的描述,请参考:http://wiki.apache.org/hadoop/Hive/LanguageManual ,本文的内容大部分翻译自该页面,期间加入了一些在使用过程中需要注意到的事项。
Create Table
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type
[COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)]
INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常。
EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
LIKE 允许用户复制现有的表结构,但是不复制数据。
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
有分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。
表名和列名不区分大小写,SerDe 和属性名区分大小写。表和列的注释是字符串。
Drop Table
删除一个内部表的同时会同时删除表的元数据和数据。删除一个外部表,只删除元数据而保留数据。
Alter Table
Alter table 语句允许用户改变现有表的结构。用户可以增加列/分区,改变serde,增加表和 serde 熟悉,表本身重命名。
Add Partitions
ALTER TABLE table_name ADD
partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ...
partition_spec:
: PARTITION (partition_col = partition_col_value,
partition_col = partiton_col_value, ...)
用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。
ALTER TABLE page_view ADD
PARTITION (dt='2008-08-08', country='us')
location '/path/to/us/part080808'
PARTITION (dt='2008-08-09', country='us')
location '/path/to/us/part080809';
DROP PARTITION
ALTER TABLE table_name DROP
partition_spec, partition_spec,...
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。
ALTER TABLE page_view
DROP PARTITION (dt='2008-08-08', country='us');
RENAME TABLE
ALTER TABLE table_name RENAME TO new_table_name
这个命令可以让用户为表更名。数据所在的位置和分区名并不改变。换而言之,老的表名并未“释放”,对老表的更改会改变新表的数据。
Change Column Name/Type/Position/Comment
ALTER TABLE table_name CHANGE [COLUMN]
col_old_name col_new_name column_type
[COMMENT col_comment]
[FIRST|AFTER column_name]
这个命令可以允许用户修改一个列的名称、数据类型、注释或者位置。
比如:
CREATE TABLE test_change (a int, b int, c int);
ALTER TABLE test_change CHANGE a a1 INT; 将 a 列的名字改为 a1.
ALTER TABLE test_change CHANGE a a1 STRING AFTER b; 将 a 列的名字改为 a1,a 列的数据类型改为 string,并将它放置在列 b 之后。新的表结构为: b int, a1 string, c int.
ALTER TABLE test_change CHANGE b b1 INT FIRST; 会将 b 列的名字修改为 b1, 并将它放在第一列。新表的结构为: b1 int, a string, c int.
注意:对列的改变只会修改 Hive 的元数据,而不会改变实际数据。用户应该确定保证元数据定义和实际数据结构的一致性。
Add/Replace Columns
ALTER TABLE table_name ADD|REPLACE
COLUMNS (col_name data_type [COMMENT col_comment], ...)
ADD COLUMNS 允许用户在当前列的末尾增加新的列,但是在分区列之前。
REPLACE COLUMNS 删除以后的列,加入新的列。只有在使用 native 的 SerDE(DynamicSerDe or MetadataTypeColumnsetSerDe)的时候才可以这么做。
Alter Table Properties
ALTER TABLE table_name SET TBLPROPERTIES table_properties
table_properties:
: (property_name = property_value, property_name = property_value, ... )
用户可以用这个命令向表中增加 metadata,目前 last_modified_user,last_modified_time 属性都是由 Hive 自动管理的。用户可以向列表中增加自己的属性。可以使用 DESCRIBE EXTENDED TABLE 来获得这些信息。
Add Serde Properties
ALTER TABLE table_name
SET SERDE serde_class_name
[WITH SERDEPROPERTIES serde_properties]
ALTER TABLE table_name
SET SERDEPROPERTIES serde_properties
serde_properties:
: (property_name = property_value,
property_name = property_value, ... )
这个命令允许用户向 SerDe 对象增加用户定义的元数据。Hive 为了序列化和反序列化数据,将会初始化 SerDe 属性,并将属性传给表的 SerDe。如此,用户可以为自定义的 SerDe 存储属性。
Alter Table File Format and Organization
ALTER TABLE table_name SET FILEFORMAT file_format
ALTER TABLE table_name CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name, ...)] INTO num_buckets BUCKETS
这个命令修改了表的物理存储属性。
Loading files into table
当数据被加载至表中时,不会对数据进行任何转换。Load 操作只是将数据复制/移动至 Hive 表对应的位置。
Syntax:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename
[PARTITION (partcol1=val1, partcol2=val2 ...)]
Synopsis:
Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。
filepath 可以是:
相对路径,例如:project/data1
绝对路径,例如: /user/hive/project/data1
包含模式的完整 URI,例如:hdfs://namenode:9000/user/hive/project/data1
加载的目标可以是一个表或者分区。如果表包含分区,必须指定每一个分区的分区名。
filepath 可以引用一个文件(这种情况下,Hive 会将文件移动到表所对应的目录中)或者是一个目录(在这种情况下,Hive 会将目录中的所有文件移动至表所对应的目录中)。
如果指定了 LOCAL,那么:
load 命令会去查找本地文件系统中的 filepath。如果发现是相对路径,则路径会被解释为相对于当前用户的当前路径。用户也可以为本地文件指定一个完整的 URI,比如:file:///user/hive/project/data1.
load 命令会将 filepath 中的文件复制到目标文件系统中。目标文件系统由表的位置属性决定。被复制的数据文件移动到表的数据对应的位置。
如果没有指定 LOCAL 关键字,如果 filepath 指向的是一个完整的 URI,hive 会直接使用这个 URI。 否则:
如果没有指定 schema 或者 authority,Hive 会使用在 hadoop 配置文件中定义的 schema 和 authority,fs.default.name 指定了 Namenode 的 URI。
如果路径不是绝对的,Hive 相对于 /user/ 进行解释。
Hive 会将 filepath 中指定的文件内容移动到 table (或者 partition)所指定的路径中。
如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容(如果有)会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
SELECT
Syntax
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[
CLUSTER BY col_list
| [DISTRIBUTE BY col_list]
[SORT BY col_list]
]
[LIMIT number]
一个SELECT语句可以是一个union查询或一个子查询的一部分。
table_reference是查询的输入,可以是一个普通表、一个视图、一个join或一个子查询
简单查询。例如,下面这一语句从t1表中查询所有列的信息。
SELECT * FROM t1
WHERE Clause
where condition 是一个布尔表达式。例如,下面的查询语句只返回销售记录大于 10,且归属地属于美国的销售代表。Hive 不支持在WHERE 子句中的 IN,EXIST 或子查询。
SELECT * FROM sales WHERE amount > 10 AND region = "US"
ALL and DISTINCT Clauses
使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录。
hive> SELECT col1, col2 FROM t1
1 3
1 3
1 4
2 5
hive> SELECT DISTINCT col1, col2 FROM t1
1 3
1 4
2 5
hive> SELECT DISTINCT col1 FROM t1
1
2
基于Partition的查询
一般 SELECT 查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中它关心的那一部分。Hive 当前的实现是,只有分区断言出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝。例如,如果 page_views 表使用 date 列分区,以下语句只会读取分区为‘2008-03-01’的数据。
SELECT page_views.*
FROM page_views
WHERE page_views.date >= '2008-03-01'
AND page_views.date <= '2008-03-31';
HAVING Clause
Hive 现在不支持 HAVING 子句。可以将 HAVING 子句转化为一个字查询,例如:
SELECT col1 FROM t1 GROUP BY col1 HAVING SUM(col2) > 10
可以用以下查询来表达:
SELECT col1 FROM (SELECT col1, SUM(col2) AS col2sum
FROM t1 GROUP BY col1) t2
WHERE t2.col2sum > 10
LIMIT Clause
Limit 可以限制查询的记录数。查询的结果是随机选择的。下面的查询语句从 t1 表中随机查询5条记录:
SELECT * FROM t1 LIMIT 5
Top k 查询。下面的查询语句查询销售记录最大的 5 个销售代表。
SET mapred.reduce.tasks = 1
SELECT * FROM sales SORT BY amount DESC LIMIT 5
REGEX Column Specification
SELECT 语句可以使用正则表达式做列选择,下面的语句查询除了 ds 和 hr 之外的所有列:
SELECT `(ds|hr)?+.+` FROM sales
Join
Syntax
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER]
JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN
table_reference join_condition
table_reference:
table_factor
| join_table
table_factor:
tbl_name [alias]
| table_subquery alias
| ( table_references )
join_condition:
ON equality_expression ( AND equality_expression )*
equality_expression:
expression = expression
Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins???)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务。另外,Hive 支持多于 2 个表的连接。
写 join 查询时,需要注意几个关键点:
1. 只支持等值join,例如:
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department = b.department)
是正确的,然而:
SELECT a.* FROM a JOIN b ON (a.id b.id)
是错误的。
2. 可以 join 多于 2 个表,例如
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务,例如:
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c
ON (c.key = b.key1)
被转化为单个 map/reduce 任务,因为 join 中只使用了 b.key1 作为 join key。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2)
而这一 join 被转化为 2 个 map/reduce 任务。因为 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。
join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统。这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
所有表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果,类似的还有:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。
LEFT,RIGHT 和 FULL OUTER 关键字用于处理 join 中空记录的情况,例如:
SELECT a.val, b.val FROM a LEFT OUTER
JOIN b ON (a.key=b.key)
对应所有 a 表中的记录都有一条记录输出。输出的结果应该是 a.val, b.val,当 a.key=b.key 时,而当 b.key 中找不到等值的 a.key 记录时也会输出 a.val, NULL。“FROM a LEFT OUTER JOIN b”这句一定要写在同一行——意思是 a 表在 b 表的左边,所以 a 表中的所有记录都被保留了;“a RIGHT OUTER JOIN b”会保留所有 b 表的记录。OUTER JOIN 语义应该是遵循标准 SQL spec的。
Join 发生在 WHERE 子句之前。如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的情况:
SELECT a.val, b.val FROM a
LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可以使用其他列作为过滤条件。但是,如前所述,如果 b 表中找不到对应 a 表的记录,b 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用以下语法:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND
b.ds='2009-07-07' AND
a.ds='2009-07-07')
这一查询的结果是预先在 join 阶段过滤过的,所以不会存在上述问题。这一逻辑也可以应用于 RIGHT 和 FULL 类型的 join 中。
Join 是不能交换位置的。无论是 LEFT 还是 RIGHT join,都是左连接的。
SELECT a.val1, a.val2, b.val, c.val
FROM a
JOIN b ON (a.key = b.key)
LEFT OUTER JOIN c ON (a.key = c.key)
先 join a 表到 b 表,丢弃掉所有 join key 中不匹配的记录,然后用这一中间结果和 c 表做 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,但是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),然后我们再和 c 表 join 的时候,如果 c.key 与 a.key 或 b.key 相等,就会得到这样的结果:NULL, NULL, NULL, c.val。
LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现。Hive 当前没有实现 IN/EXISTS 子查询,所以你可以用 LEFT SEMI JOIN 重写你的子查询语句。LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。
SELECT a.key, a.value
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
可以被重写为:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key)
创建表
hive> CREATE TABLE pokes (foo INT, bar STRING);
创建表并创建索引字段ds
hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);
显示所有表
hive> SHOW TABLES;
按正条件(正则表达式)显示表,
hive> SHOW TABLES '.*s';
表添加一列
hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);
添加一列并增加列字段注释
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
更改表名
hive> ALTER TABLE events RENAME TO 3koobecaf;
删除列
hive> DROP TABLE pokes;
元数据存储
将文件中的数据加载到表中
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
加载本地数据,同时给定分区信息
hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
加载DFS数据 ,同时给定分区信息
hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
SQL 操作
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';
将查询数据输出至目录
hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';
将查询结果输出至本地目录
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;
选择所有列到本地目录
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
实际示例
创建一个表
CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;
下载示例数据文件,并解压缩
wget http://www.grouplens.org/system/files/ml-data.tar__0.gz
tar xvzf ml-data.tar__0.gz
加载数据到表中
LOAD DATA LOCAL INPATH 'ml-data/u.data'
OVERWRITE INTO TABLE u_data;
统计数据总量
SELECT COUNT(1) FROM u_data;
现在做一些复杂的数据分析
创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
import sys
import datetime
for line in sys.stdin:
line = line.strip()
userid, movieid, rating, unixtime = line.split('\t')
生成数据的周信息
weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
print '\t'.join([userid, movieid, rating, str(weekday)])
使用映射脚本
//创建表,按分割符分割行中的字段值
CREATE TABLE u_data_new (
userid INT,
movieid INT,
rating INT,
weekday INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t';
//将python文件加载到系统
add FILE weekday_mapper.py;
将数据按周进行分割
INSERT OVERWRITE TABLE u_data_new
SELECT
TRANSFORM (userid, movieid, rating, unixtime)
USING 'python weekday_mapper.py'
AS (userid, movieid, rating, weekday)
FROM u_data;
SELECT weekday, COUNT(1)
FROM u_data_new
GROUP BY weekday;
Hive 的官方文档中对查询语言有了很详细的描述,请参考:http://wiki.apache.org/hadoop/Hive/LanguageManual ,本文的内容大部分翻译自该页面,期间加入了一些在使用过程中需要注意到的事项。
Create Table
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type
[COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)]
INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常。
EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
LIKE 允许用户复制现有的表结构,但是不复制数据。
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
有分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。
表名和列名不区分大小写,SerDe 和属性名区分大小写。表和列的注释是字符串。
Drop Table
删除一个内部表的同时会同时删除表的元数据和数据。删除一个外部表,只删除元数据而保留数据。
Alter Table
Alter table 语句允许用户改变现有表的结构。用户可以增加列/分区,改变serde,增加表和 serde 熟悉,表本身重命名。
Add Partitions
ALTER TABLE table_name ADD
partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ...
partition_spec:
: PARTITION (partition_col = partition_col_value,
partition_col = partiton_col_value, ...)
用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。
ALTER TABLE page_view ADD
PARTITION (dt='2008-08-08', country='us')
location '/path/to/us/part080808'
PARTITION (dt='2008-08-09', country='us')
location '/path/to/us/part080809';
DROP PARTITION
ALTER TABLE table_name DROP
partition_spec, partition_spec,...
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。
ALTER TABLE page_view
DROP PARTITION (dt='2008-08-08', country='us');
RENAME TABLE
ALTER TABLE table_name RENAME TO new_table_name
这个命令可以让用户为表更名。数据所在的位置和分区名并不改变。换而言之,老的表名并未“释放”,对老表的更改会改变新表的数据。
Change Column Name/Type/Position/Comment
ALTER TABLE table_name CHANGE [COLUMN]
col_old_name col_new_name column_type
[COMMENT col_comment]
[FIRST|AFTER column_name]
这个命令可以允许用户修改一个列的名称、数据类型、注释或者位置。
比如:
CREATE TABLE test_change (a int, b int, c int);
ALTER TABLE test_change CHANGE a a1 INT; 将 a 列的名字改为 a1.
ALTER TABLE test_change CHANGE a a1 STRING AFTER b; 将 a 列的名字改为 a1,a 列的数据类型改为 string,并将它放置在列 b 之后。新的表结构为: b int, a1 string, c int.
ALTER TABLE test_change CHANGE b b1 INT FIRST; 会将 b 列的名字修改为 b1, 并将它放在第一列。新表的结构为: b1 int, a string, c int.
注意:对列的改变只会修改 Hive 的元数据,而不会改变实际数据。用户应该确定保证元数据定义和实际数据结构的一致性。
Add/Replace Columns
ALTER TABLE table_name ADD|REPLACE
COLUMNS (col_name data_type [COMMENT col_comment], ...)
ADD COLUMNS 允许用户在当前列的末尾增加新的列,但是在分区列之前。
REPLACE COLUMNS 删除以后的列,加入新的列。只有在使用 native 的 SerDE(DynamicSerDe or MetadataTypeColumnsetSerDe)的时候才可以这么做。
Alter Table Properties
ALTER TABLE table_name SET TBLPROPERTIES table_properties
table_properties:
: (property_name = property_value, property_name = property_value, ... )
用户可以用这个命令向表中增加 metadata,目前 last_modified_user,last_modified_time 属性都是由 Hive 自动管理的。用户可以向列表中增加自己的属性。可以使用 DESCRIBE EXTENDED TABLE 来获得这些信息。
Add Serde Properties
ALTER TABLE table_name
SET SERDE serde_class_name
[WITH SERDEPROPERTIES serde_properties]
ALTER TABLE table_name
SET SERDEPROPERTIES serde_properties
serde_properties:
: (property_name = property_value,
property_name = property_value, ... )
这个命令允许用户向 SerDe 对象增加用户定义的元数据。Hive 为了序列化和反序列化数据,将会初始化 SerDe 属性,并将属性传给表的 SerDe。如此,用户可以为自定义的 SerDe 存储属性。
Alter Table File Format and Organization
ALTER TABLE table_name SET FILEFORMAT file_format
ALTER TABLE table_name CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name, ...)] INTO num_buckets BUCKETS
这个命令修改了表的物理存储属性。
Loading files into table
当数据被加载至表中时,不会对数据进行任何转换。Load 操作只是将数据复制/移动至 Hive 表对应的位置。
Syntax:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename
[PARTITION (partcol1=val1, partcol2=val2 ...)]
Synopsis:
Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。
filepath 可以是:
相对路径,例如:project/data1
绝对路径,例如: /user/hive/project/data1
包含模式的完整 URI,例如:hdfs://namenode:9000/user/hive/project/data1
加载的目标可以是一个表或者分区。如果表包含分区,必须指定每一个分区的分区名。
filepath 可以引用一个文件(这种情况下,Hive 会将文件移动到表所对应的目录中)或者是一个目录(在这种情况下,Hive 会将目录中的所有文件移动至表所对应的目录中)。
如果指定了 LOCAL,那么:
load 命令会去查找本地文件系统中的 filepath。如果发现是相对路径,则路径会被解释为相对于当前用户的当前路径。用户也可以为本地文件指定一个完整的 URI,比如:file:///user/hive/project/data1.
load 命令会将 filepath 中的文件复制到目标文件系统中。目标文件系统由表的位置属性决定。被复制的数据文件移动到表的数据对应的位置。
如果没有指定 LOCAL 关键字,如果 filepath 指向的是一个完整的 URI,hive 会直接使用这个 URI。 否则:
如果没有指定 schema 或者 authority,Hive 会使用在 hadoop 配置文件中定义的 schema 和 authority,fs.default.name 指定了 Namenode 的 URI。
如果路径不是绝对的,Hive 相对于 /user/ 进行解释。
Hive 会将 filepath 中指定的文件内容移动到 table (或者 partition)所指定的路径中。
如果使用了 OVERWRITE 关键字,则目标表(或者分区)中的内容(如果有)会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
SELECT
Syntax
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[
CLUSTER BY col_list
| [DISTRIBUTE BY col_list]
[SORT BY col_list]
]
[LIMIT number]
一个SELECT语句可以是一个union查询或一个子查询的一部分。
table_reference是查询的输入,可以是一个普通表、一个视图、一个join或一个子查询
简单查询。例如,下面这一语句从t1表中查询所有列的信息。
SELECT * FROM t1
WHERE Clause
where condition 是一个布尔表达式。例如,下面的查询语句只返回销售记录大于 10,且归属地属于美国的销售代表。Hive 不支持在WHERE 子句中的 IN,EXIST 或子查询。
SELECT * FROM sales WHERE amount > 10 AND region = "US"
ALL and DISTINCT Clauses
使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录。
hive> SELECT col1, col2 FROM t1
1 3
1 3
1 4
2 5
hive> SELECT DISTINCT col1, col2 FROM t1
1 3
1 4
2 5
hive> SELECT DISTINCT col1 FROM t1
1
2
基于Partition的查询
一般 SELECT 查询会扫描整个表(除非是为了抽样查询)。但是如果一个表使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性,只扫描一个表中它关心的那一部分。Hive 当前的实现是,只有分区断言出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝。例如,如果 page_views 表使用 date 列分区,以下语句只会读取分区为‘2008-03-01’的数据。
SELECT page_views.*
FROM page_views
WHERE page_views.date >= '2008-03-01'
AND page_views.date <= '2008-03-31';
HAVING Clause
Hive 现在不支持 HAVING 子句。可以将 HAVING 子句转化为一个字查询,例如:
SELECT col1 FROM t1 GROUP BY col1 HAVING SUM(col2) > 10
可以用以下查询来表达:
SELECT col1 FROM (SELECT col1, SUM(col2) AS col2sum
FROM t1 GROUP BY col1) t2
WHERE t2.col2sum > 10
LIMIT Clause
Limit 可以限制查询的记录数。查询的结果是随机选择的。下面的查询语句从 t1 表中随机查询5条记录:
SELECT * FROM t1 LIMIT 5
Top k 查询。下面的查询语句查询销售记录最大的 5 个销售代表。
SET mapred.reduce.tasks = 1
SELECT * FROM sales SORT BY amount DESC LIMIT 5
REGEX Column Specification
SELECT 语句可以使用正则表达式做列选择,下面的语句查询除了 ds 和 hr 之外的所有列:
SELECT `(ds|hr)?+.+` FROM sales
Join
Syntax
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER]
JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN
table_reference join_condition
table_reference:
table_factor
| join_table
table_factor:
tbl_name [alias]
| table_subquery alias
| ( table_references )
join_condition:
ON equality_expression ( AND equality_expression )*
equality_expression:
expression = expression
Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins???)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务。另外,Hive 支持多于 2 个表的连接。
写 join 查询时,需要注意几个关键点:
1. 只支持等值join,例如:
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department = b.department)
是正确的,然而:
SELECT a.* FROM a JOIN b ON (a.id b.id)
是错误的。
2. 可以 join 多于 2 个表,例如
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务,例如:
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c
ON (c.key = b.key1)
被转化为单个 map/reduce 任务,因为 join 中只使用了 b.key1 作为 join key。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1)
JOIN c ON (c.key = b.key2)
而这一 join 被转化为 2 个 map/reduce 任务。因为 b.key1 用于第一次 join 条件,而 b.key2 用于第二次 join。
join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统。这一实现有助于在 reduce 端减少内存的使用量。实践中,应该把最大的那个表写在最后(否则会因为缓存浪费大量内存)。例如:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
所有表都使用同一个 join key(使用 1 次 map/reduce 任务计算)。Reduce 端会缓存 a 表和 b 表的记录,然后每次取得一个 c 表的记录就计算一次 join 结果,类似的还有:
SELECT a.val, b.val, c.val FROM a
JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
这里用了 2 次 map/reduce 任务。第一次缓存 a 表,用 b 表序列化;第二次缓存第一次 map/reduce 任务的结果,然后用 c 表序列化。
LEFT,RIGHT 和 FULL OUTER 关键字用于处理 join 中空记录的情况,例如:
SELECT a.val, b.val FROM a LEFT OUTER
JOIN b ON (a.key=b.key)
对应所有 a 表中的记录都有一条记录输出。输出的结果应该是 a.val, b.val,当 a.key=b.key 时,而当 b.key 中找不到等值的 a.key 记录时也会输出 a.val, NULL。“FROM a LEFT OUTER JOIN b”这句一定要写在同一行——意思是 a 表在 b 表的左边,所以 a 表中的所有记录都被保留了;“a RIGHT OUTER JOIN b”会保留所有 b 表的记录。OUTER JOIN 语义应该是遵循标准 SQL spec的。
Join 发生在 WHERE 子句之前。如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写。这里面一个容易混淆的问题是表分区的情况:
SELECT a.val, b.val FROM a
LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
会 join a 表到 b 表(OUTER JOIN),列出 a.val 和 b.val 的记录。WHERE 从句中可以使用其他列作为过滤条件。但是,如前所述,如果 b 表中找不到对应 a 表的记录,b 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 b 表中不能找到匹配 a 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关了。解决的办法是在 OUTER JOIN 时使用以下语法:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND
b.ds='2009-07-07' AND
a.ds='2009-07-07')
这一查询的结果是预先在 join 阶段过滤过的,所以不会存在上述问题。这一逻辑也可以应用于 RIGHT 和 FULL 类型的 join 中。
Join 是不能交换位置的。无论是 LEFT 还是 RIGHT join,都是左连接的。
SELECT a.val1, a.val2, b.val, c.val
FROM a
JOIN b ON (a.key = b.key)
LEFT OUTER JOIN c ON (a.key = c.key)
先 join a 表到 b 表,丢弃掉所有 join key 中不匹配的记录,然后用这一中间结果和 c 表做 join。这一表述有一个不太明显的问题,就是当一个 key 在 a 表和 c 表都存在,但是 b 表中不存在的时候:整个记录在第一次 join,即 a JOIN b 的时候都被丢掉了(包括a.val1,a.val2和a.key),然后我们再和 c 表 join 的时候,如果 c.key 与 a.key 或 b.key 相等,就会得到这样的结果:NULL, NULL, NULL, c.val。
LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现。Hive 当前没有实现 IN/EXISTS 子查询,所以你可以用 LEFT SEMI JOIN 重写你的子查询语句。LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行。
SELECT a.key, a.value
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
可以被重写为:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key)
相关推荐
在大数据处理领域,Hive是一个非常重要的工具,它提供了一个基于Hadoop的数据仓库基础设施,用于数据查询、分析和管理大规模数据集。本教程将详细讲解如何在Linux环境下安装Hive客户端,以便进行数据操作和分析。 ...
在大数据处理领域,Apache Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL(HQL,Hive Query Language)查询存储在Hadoop集群中的大型数据集。Hive JDBC(Java Database Connectivity)是Hive提供的一种...
"HIVE安装及详解" HIVE是一种基于Hadoop的数据仓库工具,主要用于处理和分析大规模数据。下面是关于HIVE的安装及详解。 HIVE基本概念 HIVE是什么?HIVE是一种数据仓库工具,主要用于处理和分析大规模数据。它将...
使用hive3.1.2和spark3.0.0配置hive on spark的时候,发现官方下载的hive3.1.2和spark3.0.0不兼容,hive3.1.2对应的版本是spark2.3.0,而spark3.0.0对应的hadoop版本是hadoop2.6或hadoop2.7。 所以,如果想要使用高...
在大数据处理领域,Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL(HQL,Hive Query Language)查询和管理存储在Hadoop分布式文件系统(HDFS)中的大量结构化数据。Hive 1.1.0是Hive的一个版本,提供了...
在大数据处理领域,Hive是一个基于Hadoop的数据仓库工具,它可以将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,使得用户可以使用SQL语句来处理存储在Hadoop分布式文件系统(HDFS)上的大数据。...
《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第5章 Hive数据操作.pdf《Hive数据仓库案例教程》教学课件 第...
Apache Hive 是一个基于 Hadoop 的数据仓库工具,用于组织、查询和分析大量数据。它提供了一个SQL-like(HQL,Hive SQL)接口,使得非专业程序员也能方便地处理存储在Hadoop分布式文件系统(HDFS)中的大规模数据集...
《DBeaver与Hive连接:hive-jdbc-uber-2.6.5.0-292.jar驱动详解》 在大数据处理领域,Hive作为一个基于Hadoop的数据仓库工具,广泛用于数据查询和分析。而DBeaver,作为一款跨平台的数据库管理工具,以其用户友好的...
### Hive用户指南中文版知识点概览 #### 一、Hive结构 **1.1 Hive架构** Hive架构主要包括以下几个核心组成部分: - **用户接口**:主要包括命令行界面(CLI)、客户端(Client)以及Web用户界面(WUI)。其中,...
hive-exec-2.1.1 是 Apache Hive 的一部分,特别是与 Hive 的执行引擎相关的组件。Apache Hive 是一个构建在 Hadoop 之上的数据仓库基础设施,它允许用户以 SQL(结构化查询语言)的形式查询和管理大型数据集。Hive ...
Hive是一个基于Hadoop的数据仓库工具,它本身并不存储数据,部署在Hadoop集群上,数据是存储在HDFS上的. Hive所建的表在HDFS上对应的是一个文件夹,表的内容对应的是一个文件。它不仅可以存储大量的数据而且可以对...
在Python中编写Hive脚本主要是为了方便地与Hadoop HIVE数据仓库进行交互,这样可以在数据分析和机器学习流程中无缝地集成大数据处理步骤。以下将详细介绍如何在Python环境中执行Hive查询和管理Hive脚本。 1. **直接...
在大数据处理领域,Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL(HQL,Hive Query Language)查询和管理存储在Hadoop分布式文件系统(HDFS)中的大量数据。Hive提供了数据整合、元数据管理、查询和分析...
在大数据处理领域,Apache Hive 是一个非常重要的工具,它提供了一个SQL-like的接口来查询、管理和分析存储在分布式存储系统(如Hadoop)中的大规模数据集。本篇将重点讲解如何利用Hive对Protobuf序列化的文件进行...
含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-3.1.2-bin.tar.gz 含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-3.1.2-bin.tar.gz 含两个文件hive-jdbc-3.1.2-standalone.jar和apache-hive-...
在大数据领域,Apache Ambari 是一个用于 Hadoop 集群管理和监控的开源工具,而 Hive 是一个基于 Hadoop 的数据仓库系统,用于处理和分析大规模数据集。本话题聚焦于如何在 Ambari 环境下将 Hive 3.0 升级到 Hive ...
Hive 优化方法整理 Hive 优化方法整理是 Hive 数据处理过程中的重要步骤,涉及到 Hive 的类 SQL 语句本身进行调优、参数调优、Hadoop 的 HDFS 参数调优和 Map/Reduce 调优等多个方面。 Hive 类 SQL 语句优化 1. ...
【Hive原理】 Hive是基于Hadoop平台的数据仓库解决方案,它主要解决了在大数据场景下,业务人员和数据科学家能够通过熟悉的SQL语言进行数据分析的问题。Hive并不存储数据,而是依赖于HDFS进行数据存储,并利用...