以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念。由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍。本文将从Java的角度看问题,包含下面的这些概念:
1. 字符串
2. 链表
3. 树
4. 图
5. 排序
6. 递归 vs. 迭代
7. 动态规划
8. 位操作
9. 概率问题
10. 排列组合
1. 字符串
如果IDE没有代码自动补全功能,所以你应该记住下面的这些方法。
1
2
3
4
5
6
|
toCharyArray() // 获得字符串对应的char数组
Arrays.sort() // 数组排序
Arrays.toString(char[] a) // 数组转成字符串
charAt( int x) // 获得某个索引处的字符
length() // 字符串长度
length // 数组大小
|
2. 链表
在Java中,链表的实现非常简单,每个节点Node都有一个值val和指向下个节点的链接next。
1
2
3
4
5
6
7
8
9
|
class Node {
int val;
Node next;
Node( int x) {
val = x;
next = null ;
}
} |
链表两个著名的应用是栈Stack和队列Queue。
栈:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
class Stack{
Node top;
public Node peek(){
if (top != null ){
return top;
}
return null ;
}
public Node pop(){
if (top == null ){
return null ;
} else {
Node temp = new Node(top.val);
top = top.next;
return temp;
}
}
public void push(Node n){
if (n != null ){
n.next = top;
top = n;
}
}
} |
队列:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
class Queue{
Node first, last;
public void enqueue(Node n){
if (first == null ){
first = n;
last = first;
} else {
last.next = n;
last = n;
}
}
public Node dequeue(){
if (first == null ){
return null ;
} else {
Node temp = new Node(first.val);
first = first.next;
return temp;
}
}
} |
3. 树
这里的树通常是指二叉树,每个节点都包含一个左孩子节点和右孩子节点,像下面这样:
1
2
3
4
5
|
class TreeNode{
int value;
TreeNode left;
TreeNode right;
} |
下面是与树相关的一些概念:
- 平衡 vs. 非平衡:平衡二叉树中,每个节点的左右子树的深度相差至多为1(1或0)。
- 满二叉树(Full Binary Tree):除叶子节点以为的每个节点都有两个孩子。
- 完美二叉树(Perfect Binary Tree):是具有下列性质的满二叉树:所有的叶子节点都有相同的深度或处在同一层次,且每个父节点都必须有两个孩子。
- 完全二叉树(Complete Binary Tree):二叉树中,可能除了最后一个,每一层都被完全填满,且所有节点都必须尽可能想左靠。
4. 图
图相关的问题主要集中在深度优先搜索(depth first search)和广度优先搜索(breath first search)。
下面是一个简单的图广度优先搜索的实现。
1) 定义GraphNode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class GraphNode{
int val;
GraphNode next;
GraphNode[] neighbors;
boolean visited;
GraphNode( int x) {
val = x;
}
GraphNode( int x, GraphNode[] n){
val = x;
neighbors = n;
}
public String toString(){
return "value: " + this .val;
}
} |
2) 定义一个队列Queue
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
class Queue{
GraphNode first, last;
public void enqueue(GraphNode n){
if (first == null ){
first = n;
last = first;
} else {
last.next = n;
last = n;
}
}
public GraphNode dequeue(){
if (first == null ){
return null ;
} else {
GraphNode temp = new GraphNode(first.val, first.neighbors);
first = first.next;
return temp;
}
}
} |
3) 用队列Queue实现广度优先搜索
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
public class GraphTest {
public static void main( String [] args) {
GraphNode n1 = new GraphNode( 1 );
GraphNode n2 = new GraphNode( 2 );
GraphNode n3 = new GraphNode( 3 );
GraphNode n4 = new GraphNode( 4 );
GraphNode n5 = new GraphNode( 5 );
n1.neighbors = new GraphNode[]{n2,n3,n5};
n2.neighbors = new GraphNode[]{n1,n4};
n3.neighbors = new GraphNode[]{n1,n4,n5};
n4.neighbors = new GraphNode[]{n2,n3,n5};
n5.neighbors = new GraphNode[]{n1,n3,n4};
breathFirstSearch(n1, 5 );
}
public static void breathFirstSearch(GraphNode root, int x){
if (root.val == x)
System.out.println( "find in root" );
Queue queue = new Queue();
root.visited = true ;
queue.enqueue(root);
while (queue.first != null ){
GraphNode c = (GraphNode) queue.dequeue();
for (GraphNode n: c.neighbors){
if (!n.visited){
System.out.print(n + " " );
n.visited = true ;
if (n.val == x)
System.out.println( "Find " +n);
queue.enqueue(n);
}
}
}
}
} |
1
2
|
value: 2 value: 3 value: 5 Find value: 5 value: 4 |
5. 排序
下面是不同排序算法的时间复杂度,你可以去wiki看一下这些算法的基本思想。
Algorithm | Average Time | Worst Time | Space |
冒泡排序 | n^2 | n^2 | 1 |
选择排序 | n^2 | n^2 | 1 |
Counting Sort | n+k | n+k | n+k |
Insertion sort | n^2 | n^2 | |
Quick sort | n log(n) | n^2 | |
Merge sort | n log(n) | n log(n) | depends |
6. 递归 vs. 迭代
对程序员来说,递归应该是一个与生俱来的思想(a built-in thought),可以通过一个简单的例子来说明。
问题: 有n步台阶,一次只能上1步或2步,共有多少种走法。
步骤1:找到走完前n步台阶和前n-1步台阶之间的关系。
为了走完n步台阶,只有两种方法:从n-1步台阶爬1步走到或从n-2步台阶处爬2步走到。如果f(n)是爬到第n步台阶的方法数,那么f(n) = f(n-1) + f(n-2)。
步骤2: 确保开始条件是正确的。
f(0) = 0;
f(1) = 1;
1
2
3
4
5
|
public static int f( int n){
if (n <= 2 ) return n;
int x = f(n- 1 ) + f(n- 2 );
return x;
} |
递归方法的时间复杂度是n的指数级,因为有很多冗余的计算,如下:
f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
直接的想法是将递归转换为迭代:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
public static int f( int n) {
if (n <= 2 ){
return n;
}
int first = 1 , second = 2 ;
int third = 0 ;
for ( int i = 3 ; i <= n; i++) {
third = first + second;
first = second;
second = third;
}
return third;
} |
对这个例子而言,迭代花费的时间更少
7. 动态规划
动态规划是解决下面这些性质类问题的技术:
- 一个问题可以通过更小子问题的解决方法来解决。
- 有些子问题的解可能需要计算多次。
- 子问题的解存储在一张表格里,这样每个子问题只用计算一次。
- 需要额外的空间以节省时间。
爬台阶问题完全符合上面的四条性质,因此可以用动态规划法来解决。
1
2
3
4
5
6
7
8
9
10
11
12
|
public static int [] A = new int [ 100 ];
public static int f3( int n) {
if (n <= 2 )
A[n]= n;
if (A[n] > 0 )
return A[n];
else
A[n] = f3(n- 1 ) + f3(n- 2 ); //store results so only calculate once!
return A[n];
} |
8. 位操作
位操作符:
OR (|) | AND (&) | XOR (^) | Left Shift (<<) | Right Shift (>>) | Not (~) |
1|0=1 | 1&0=0 | 1^0=1 | 0010<<2=1000 | 1100>>2=0011 | ~1=0 |
获得给定数字n的第i位:(i从0计数并从右边开始)
1
2
3
4
5
6
7
8
|
public static boolean getBit( int num, int i){
int result = num & ( 1 <<i);
if (result == 0 ){
return false ;
} else {
return true ;
}
|
例如,获得数字10的第2位:
i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;
9. 概率问题
解决概率相关的问题通常需要很好的规划了解问题(formatting the problem),这里刚好有一个这类问题的简单例子:
一个房间里有50个人,那么至少有两个人生日相同的概率是多少?(忽略闰年的事实,也就是一年365天)
计 算某些事情的概率很多时候都可以转换成先计算其相对面。在这个例子里,我们可以计算所有人生日都互不相同的概率,也就是:365/365 + 364/365 + 363/365 + 365-n/365 + 365-49/365,这样至少两个人生日相同的概率就是1 – 这个值。
1
2
3
4
5
6
7
8
9
|
public static double caculateProbability( int n){
double x = 1 ;
for ( int i= 0 ; i<n; i++){
x *= ( 365.0 -i)/ 365.0 ;
}
double pro = Math.round(( 1 -x) * 100 );
return pro/ 100 ;
|
calculateProbability(50) = 0.97
10. 排列组合
组合和排列的区别在于次序是否关键。
相关推荐
"编程面试题汇总"这个资源包含了一系列关于不同编程语言如Java、C++、C以及软件测试的面试问题,旨在为准备面试的人提供全面的参考资料。以下是对这些知识点的详细解释: 1. **Java**: - **内存管理**:理解Java...
本PDF文档收录了大量这类题目,涵盖了面试中最常见的智力题、算法题和编程题,并且特别提到了大数据处理方面的内容,这对于应聘者来说是非常有价值的资源。本文将根据给出的内容部分详细解读涉及的知识点。 首先,...
在IT领域,算法是解决问题和优化计算...总的来说,"经典算法练习汇总"是一个宝贵的资源,无论你是编程新手还是有经验的开发者,都能从中受益。投入时间深入学习并实践这些算法,无疑会为你的IT职业生涯打下坚实的基础。
数据结构与算法是计算机...以上知识点涵盖了数据结构与算法的基础内容,对于准备面试或考试的学生来说,这些都是必须要掌握的核心概念。通过深入理解这些概念并练习相关题目,可以提升在实际编程和问题解决中的能力。
CV(计算机视觉)算法岗的知识点和面试问答可以涵盖多个方面,包括计算机视觉、机器学习、图像处理、编程语言和数据结构等。以下是对这些方面的简要概述和面试中可能出现的问题: 一、计算机视觉 知识点: 计算机...
在AI领域,算法岗位的面试通常涵盖广泛的议题,包括但不限于机器学习基础、深度学习理论、自然语言处理(NLP)、计算机视觉(CV)、优化算法、数据结构与算法基础、编程能力以及项目经验等。这份“AI算法岗面试经验...
《C C++面试题大汇总》是一份涵盖了C和C++面试中常见问题的资源集锦,主要来源于网络,特别是CSDN这个知名的开发者社区。这份资料的目的在于为准备C++面试的求职者提供全面而丰富的知识复习材料,其中包含了大约200...
这个压缩文件包括了九个章节,覆盖了从基础到高级的数据结构与算法知识,对于学习和提升编程能力具有极大的帮助。 首先,第一章《绪论》为整个学习过程奠定了基础,介绍了算法的重要性和在计算机科学中的地位,以及...
【去哪儿网2014笔试算法题汇总】 在软件开发中,尤其是在文件系统操作和路径处理方面,将相对路径转换为绝对路径是一项基础且重要的任务。这个问题是去哪儿网2014年笔试中的一道算法题,其目标是编写一个函数`RP2AP...
这份"C++面试真题汇总和解答"提供了全面的面试问题及答案,旨在帮助你更好地理解C++的关键概念,提升你的面试竞争力。以下是一些可能涵盖的重要知识点: 1. **基本语法**:包括变量声明、类型转换、运算符优先级、...
- 除了上述概念,面试还可能涵盖其他编程问题,如内存管理(动态分配、释放、内存泄漏检测)、指针操作、函数指针、结构体与联合体、位操作、异常处理、多线程同步、文件I/O、算法和数据结构等。 总之,成为一名...
以上内容涵盖了C/C++编程面试中常见的知识点,准备面试时,不仅需要掌握理论,还需要通过实践加深理解,以应对各种实际问题。"c与c++面试题汇总.doc"文档应该包含这些领域的实例题目,通过解答这些题目,可以有效地...
本资料库主要汇总了C/C++语言实现的各种数据结构和算法,对于学习者和求职者来说,它提供了丰富的实践资源。 首先,我们要理解什么是数据结构。数据结构是组织、管理、存储和检索数据的方式,包括数组、链表、栈、...
在IT行业的求职过程中,面试是至关重要的一环,尤其对于阿里巴巴、百度、腾讯等顶级互联网公司而言,面试题往往涵盖广泛且深度颇深。这些公司的面试题不仅检验候选人的技术实力,还考察其逻辑思维、问题解决能力和...
"C#算法与数据结构汇总.doc"文档很可能包含了以下内容:基础的算法概念,如递归和分治策略;常用数据结构的实现和应用,如堆栈、队列、链表和树;高级算法,如图遍历和搜索算法;以及各种排序和查找算法的C#代码实现...
《各大公司Java面试大汇总3》是一份涵盖了众多知名公司Java面试题目的宝贵资源,旨在帮助求职者深入了解和准备Java技术面试。这份压缩包包含了多种格式的文件,如CHM、DOC、PDF和RAR,提供了丰富的学习材料。下面将...
【标题】"后端面试题汇总(Python、Redis、MySQL、PostgreSQL、Kafka、数据结构、算法、编程、网络).zip" 提供的是一个综合性的后端开发者面试资源包,涵盖了多个关键领域的知识。这包括Python编程语言、Redis缓存...
通过《算法总汇C++数据结构》的学习,你不仅能掌握数据结构和算法的基本概念,还能通过实际编程提升编程技巧,为解决复杂问题打下坚实基础。无论是面试还是实际工作中,对数据结构和算法的精通都将极大地提升你的...