`
QING____
  • 浏览: 2255728 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Jedis一致性hash与sharding

 
阅读更多

 

    Redis-server本身并没有sharding方法,不过我们可以借助客户端程序来实现此功能,Jedis中已经为我们提供了足够的API,接下来通过2种方式分别介绍3个API使用方法。不过首先介绍一下Jedis中sharding原理

 

一.Sharding与一致性Hash

    sharding的核心理念就是将数据按照一定的策略"分散"存储在集群中不同的物理server上,本质上实现了"大数据"分布式存储,以及体现了"集群"的高可用性.比如1亿数据,我们按照数据的hashcode散列存储在5个server上.

    Jedis中sharding基于“一致性hash”算法,其思路非常清晰,代码基本也是标准的“一致性hash”的实现,我们先来“欣赏”一下:

    1) hashcode取值:源码来自redis.clients.util.Hashing,Jedis中默认的hash值计算采取了MD5作为辅助,似乎此算法已经成为“标准”:

//少量优化性能
public ThreadLocal<MessageDigest> md5Holder = new ThreadLocal<MessageDigest>();
public static final Hashing MD5 = new Hashing() {
public long hash(String key) {
    return hash(SafeEncoder.encode(key));
}

public long hash(byte[] key) {
    try {
        if (md5Holder.get() == null) {
            md5Holder.set(MessageDigest.getInstance("MD5"));
        }
    } catch (NoSuchAlgorithmException e) {
        throw new IllegalStateException("++++ no md5 algorythm found");
    }
    MessageDigest md5 = md5Holder.get();

    md5.reset();
    md5.update(key);
    byte[] bKey = md5.digest();//获得MD5字节序列
    //前四个字节作为计算参数,最终获得一个32位int值.
    //此种计算方式,能够确保key的hash值更加“随即”/“离散”
    //如果hash值过于密集,不利于一致性hash的实现(特别是有“虚拟节点”设计时)
    long res = ((long) (bKey[3] & 0xFF) << 24)
            | ((long) (bKey[2] & 0xFF) << 16)
            | ((long) (bKey[1] & 0xFF) << 8) | (long) (bKey[0] & 0xFF);
    return res;
}
};

   

    2) node构建过程(redis.clients.util.Sharded):

//shards列表为客户端提供了所有redis-server配置信息,包括:ip,port,weight,name
//其中weight为权重,将直接决定“虚拟节点”的“比例”(密度),权重越高,在存储是被hash命中的概率越高
//--其上存储的数据越多。
//其中name为“节点名称”,jedis使用name作为“节点hash值”的一个计算参数。
//---
//一致性hash算法,要求每个“虚拟节点”必须具备“hash值”,每个实际的server可以有多个“虚拟节点”(API级别)
//其中虚拟节点的个数= “逻辑区间长度” * weight,每个server的“虚拟节点”将会以“hash”的方式分布在全局区域中
//全局区域总长为2^32.每个“虚拟节点”以hash值的方式映射在全局区域中。
// 环形:0-->vnode1(:1230)-->vnode2(:2800)-->vnode3(400000)---2^32-->0
//所有的“虚拟节点”将按照其”节点hash“顺序排列(正序/反序均可),因此相邻两个“虚拟节点”之间必有hash值差,
//那么此差值,即为前一个(或者后一个,根据实现而定)“虚拟节点”所负载的数据hash值区间。
//比如hash值为“2000”的数据将会被vnode1所接受。
//---
private void initialize(List<S> shards) {
	nodes = new TreeMap<Long, S>();//虚拟节点,采取TreeMap存储:排序,二叉树

	for (int i = 0; i != shards.size(); ++i) {
	    final S shardInfo = shards.get(i);
	    if (shardInfo.getName() == null)
                //当没有设置“name”是,将“SHARD-NODE”作为“虚拟节点”hash值计算的参数
                //"逻辑区间步长"为160,为什么呢??
                //最终多个server的“虚拟节点”将会交错布局,不一定非常均匀。
	    	for (int n = 0; n < 160 * shardInfo.getWeight(); n++) {
	    		nodes.put(this.algo.hash("SHARD-" + i + "-NODE-" + n), shardInfo);
	    	}
	    else
	    	for (int n = 0; n < 160 * shardInfo.getWeight(); n++) {
	    		nodes.put(this.algo.hash(shardInfo.getName() + "*" + shardInfo.getWeight() + n), shardInfo);
	    	}
	    resources.put(shardInfo, shardInfo.createResource());
	}
}

    3) node选择方式:

public R getShard(String key) {
	return resources.get(getShardInfo(key));
}
//here:
public S getShardInfo(byte[] key) {
        //获取>=key的“虚拟节点”的列表
	SortedMap<Long, S> tail = nodes.tailMap(algo.hash(key));
        //如果不存在“虚拟节点”,则将返回首节点。
	if (tail.size() == 0) {
	    return nodes.get(nodes.firstKey());
	}
        //如果存在,则返回符合(>=key)条件的“虚拟节点”的第一个节点
	return tail.get(tail.firstKey());
}

    4) 补充:

    Jedis sharding模式下,如果某个server失效,客户端并不会删除此shard,所以如果访问此shard将会抛出异常。这是为了保持所有的客户端数据视图一致性。你可能希望动态的一致性hash拓扑结构(即如果某个shard失效,shard结构则重新调整,失效的shard上的数据则被hash到其他shard上),但是很遗憾,SharedJedis客户端无法支持,如果非要支持,则需要巨大的代码调整,而且还需要引入额外的拓扑自动发现机制。(参看:redis cluster架构,已提供此问题的完善解决方案)

    不过,在持久存储的情况下,我们可以使用"强hash"分片,则需要重写其Hash算法,参见"程序实例1中的InnnerHashing"实现.强hash算法下,如果某个虚拟节点所在的物理server故障,将导致数据无法访问(读取/存储);即不会从虚拟节点列表中删除那些失效的server。

 

    对于jedis如果重写了Hashing算法,你需要兼顾几个方面:1) 虚拟节点hash是否相对均匀 2) 数据的hash值分布是否均匀 3) 虚拟节点在“全局”是否散列均匀。。如果设计不良,很有可能导致数据在server上分布不均,而失去了sharding的本身意义。

 

二.ShardedJedis

    1) 程序实例

 

public static void main(String[] args){
	//ip,port,timeout,weight
	JedisShardInfo si1 = new JedisShardInfo("127.0.0.1", 6379,15000,1);
	JedisShardInfo si2 = new JedisShardInfo("127.0.0.1", 6479,15000,1);
	List<JedisShardInfo> shards = new ArrayList<JedisShardInfo>();
	shards.add(si1);
	shards.add(si2);
	//指定hash算法,默认为"cache-only"的一致性hash,不过此处InnerHashing为强hash分片
	ShardedJedis shardedJedis = new ShardedJedis(shards,new InnerHashing());
	//指定hash算法
	shardedJedis.set("k1", "v1");
	Charset charset = Charset.forName("utf-8");
	//注意此处对key的字节转换时,一定要和Innerhashing.hash(String)保持一致
	System.out.println(shardedJedis.get("k1").getBytes(charset));
}
//不建议自己重新hash算法,jedis的默认算法已经足够良好,默认为"一致性hash"分片
//此hash算法,为"强Hash"分片
static class InnerHashing implements Hashing{
	static Charset charset = Charset.forName("utf-8");
	@Override
	public long hash(String key) {
		return hash(key.getBytes(charset));
	}

	@Override
	public long hash(byte[] key) {
		int hashcode = new HashCodeBuilder().append(key).toHashCode();
		return hashcode & 0x7FFFFFFF;
	}
	
}

    2) spring环境下

 

<bean id="shardedJedis" class="redis.clients.jedis.ShardedJedis">
	<constructor-arg>
		<list>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
		</list>
	</constructor-arg>
</bean>
//resources/beans.xml
ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("classpath:beans.xml");
ShardedJedis shardedJedis = (ShardedJedis)context.getBean("shardedJedis");
try{
	shardedJedis.set("k1", "v2");
	System.out.println(shardedJedis.get("k1"));
}catch(Exception e){
	e.printStackTrace();
}

 

三.ShardedJedisPool

    基于连接池的sharding代码实例.

    1) 程序实例

JedisPoolConfig config = new JedisPoolConfig();
config.setMaxActive(32);
config.setMaxIdle(6);
config.setMinIdle(0);
config.setMaxWait(15000);

JedisShardInfo si1 = new JedisShardInfo("127.0.0.1", 6379,15000,1);
JedisShardInfo si2 = new JedisShardInfo("127.0.0.1", 6479,15000,1);
List<JedisShardInfo> shards = new ArrayList<JedisShardInfo>();
shards.add(si1);
shards.add(si2);
ShardedJedisPool sjp = new ShardedJedisPool(config, shards, new InnerHashing());
ShardedJedis shardedJedis = sjp.getResource();
try{
	System.out.println(shardedJedis.get("k1"));
}catch(Exception e){
	e.printStackTrace();
}finally{
	sjp.returnResource(shardedJedis);
}

    2) spring环境下

<bean id="jedisPoolConfig" class="redis.clients.jedis.JedisPoolConfig">
	<property name="maxActive" value="32"></property>
	<property name="maxIdle" value="6"></property>
	<property name="maxWait" value="15000"></property>
	<property name="minEvictableIdleTimeMillis" value="300000"></property>
	<property name="numTestsPerEvictionRun" value="3"></property>
	<property name="timeBetweenEvictionRunsMillis" value="60000"></property>
	<property name="whenExhaustedAction" value="1"></property>
</bean>
<bean id="shardedJedisPool" class="redis.clients.jedis.ShardedJedisPool" destroy-method="destroy">
	<constructor-arg ref="jedisPoolConfig"></constructor-arg>
	<constructor-arg>
		<list>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
			<bean class="redis.clients.jedis.JedisShardInfo">
				<constructor-arg value="127.0.0.1"></constructor-arg>
				<constructor-arg value="6379"></constructor-arg>
				<property name="password" value="0123456"></property>
			</bean>
		</list>
	</constructor-arg>
</bean>

    更多连接池的配置参数,请参考:jedis连接池

//resources/beans.xml
ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("classpath:beans.xml");
ShardedJedisPool shardedJedisPool = (ShardedJedisPool)context.getBean("shardedJedisPool");
ShardedJedis shardedJedis = shardedJedisPool.getResource();
try{
	shardedJedis.set("k1", "v2");
	System.out.println(shardedJedis.get("k1"));
}catch(Exception e){
	e.printStackTrace();
}finally{
	shardedJedisPool.returnResource(shardedJedis);
}

 

四.ShardedJedisPipeline    其他配置参见上文

ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("classpath:beans.xml");
ShardedJedisPool shardedJedisPool = (ShardedJedisPool)context.getBean("shardedJedisPool");
ShardedJedis shardedJedis = shardedJedisPool.getResource();
try{
	ShardedJedisPipeline shardedJedisPipeline = new ShardedJedisPipeline();
	shardedJedisPipeline.setShardedJedis(shardedJedis);
	shardedJedisPipeline.set("k1", "v1");
	shardedJedisPipeline.set("k3", "v3");
	shardedJedisPipeline.get("k3");
	List<Object> results = shardedJedisPipeline.syncAndReturnAll();
	for(Object result : results){
		System.out.println(result.toString());
	}
}catch(Exception e){
	e.printStackTrace();
}finally{
	shardedJedisPool.returnResource(shardedJedis);
}
分享到:
评论
2 楼 DEMONU 2016-11-02  
好文章,学习,mark
1 楼 伊人过客 2014-12-04  
[list]
[*]
引用

[/list]

相关推荐

    解决分布式数据插入数据库~一致性hash算法

    在Java实现中,一致性哈希通常会用到如Jedis、Voldemort等分布式存储库。这些库内部实现了哈希函数和虚拟节点的概念,虚拟节点可以看作是对实际节点的多次映射,增加了哈希空间的覆盖,使得数据分布更均匀。然而,...

    jedis-2.5.1.jar

    Jedis 是 Redis 官方首选的 Java 客户端开发包。 实例方法: ? 1 import redis.clients.jedis.* ...Sharding (MD5, MurmurHash) Key-tags for sharding Sharding with pipelining Scripting with pipelining

    jedis jedis.jar

    5. 一致性哈希:通过一致性哈希算法,实现Redis集群的数据分布,保证在添加或移除服务器时,数据迁移的影响最小。 在实际项目中,开发人员通常会将`jedis-2.1.0.jar`和`jedis-2.0.0.jar`这样的库文件包含到项目的类...

    jedis2.8 与 spring3.2 整合

    总的来说,理解并掌握Redis集群部署和Jedis与Spring的整合,对于提升系统的性能和稳定性至关重要。通过实践和学习,开发者可以更好地应对高并发、大数据量的场景,为应用程序提供高效的数据存储和访问能力。

    Jedis所需jar包

    3. 事务处理:支持多条命令的原子性执行,确保数据一致性。 4. 消息订阅与发布:实现发布者和订阅者模式,进行实时消息传递。 5. Lua脚本支持:可以在服务器端执行Lua脚本,实现复杂的数据操作逻辑。 6. 连接池管理...

    jedis依赖jar包

    这个版本包含了许多改进和修复,确保了与Redis服务器的兼容性以及更好的性能和稳定性。在使用Jedis 2.7.0之前,确保你的Redis服务器版本与其兼容,以避免潜在的问题。 **安装与依赖** 要在项目中使用Jedis,首先...

    jedis相关jar包

    此外,Jedis还支持Sentinel和Cluster模式,以适应高可用性和分布式环境的需求。 总的来说,这个压缩包提供了在Java环境中使用Jedis与Redis交互的基础。无论是开发简单的单机应用还是构建复杂的分布式系统,这些jar...

    Jedis2.1.0源码与Jar包

    5. **复制与Sentinel支持**:Jedis可以与Redis的复制和Sentinel哨兵系统配合,实现高可用性。 ### Jedis 2.1.0源码分析 Jedis的源码可以帮助我们深入了解其内部工作原理,例如: 1. **连接管理**:包括连接建立、...

    jedis安装包

    在本文中,我们将深入探讨Jedis的安装、配置、基本操作以及它在实际应用中的重要性。 一、Jedis简介 Jedis是由Xavier Lachier开发的Java Redis客户端,它提供了丰富的Redis命令支持,包括字符串、哈希、列表、集合...

    jedis-2.9.0.jar

    3. **哈希操作**:添加哈希字段 `jedis.hset("hash", "field", "value")`,获取整个哈希 `jedis.hgetAll("hash")`。 4. **列表操作**:向列表尾部添加元素 `jedis.rpush("list", "item")`,获取列表 `jedis.lrange(...

    jedis.jar下载

    3. **性能优秀**:Jedis通过优化的网络通信和序列化机制,确保了与Redis服务器交互的高效性。 4. **连接池管理**:Jedis支持连接池,可以有效管理多个客户端连接,提高并发性能。 5. **集群支持**:Jedis提供对Redis...

    Java通过Jedis操作Redis

    而Java作为广泛使用的编程语言,通过Jedis库与Redis进行交互,实现了对Redis丰富的操作功能。本文将深入探讨如何使用Java和Jedis来操作Redis,涉及Redis的基本数据类型、主从复制以及事务处理。 首先,让我们了解...

    使用redisson替代jedis

    在Java开发领域,开发者可以选择多种客户端来与Redis进行交互,其中最常用的是Jedis和Redisson。本文将详细介绍如何使用Redisson来替代Jedis,并对两者之间的对应方法进行详细对比。 #### Jedis简介 Jedis是用Java...

    jedis5.1.0.jar

    jedis5.1.0.jar

    jedis-2.9.0.jar和commons-pool2-2.6.0.jar下载(jedis连接redis数据库)

    - 在高并发场景下,考虑使用JedisCluster或Sentinel支持的分布式配置,以获得更好的可扩展性和可用性。 通过理解和正确使用Jedis及Apache Commons Pool,Java开发者可以高效地与Redis数据库进行交互,实现数据存储...

    Jedis操作5种数据类型

    在Redis中,有五种基本的数据类型用于存储和操作数据:String、Hash、List、Set和Sorted Set。Jedis是Java开发的Redis客户端库,它提供了丰富的API来操作这些数据类型。下面我们将深入探讨每种数据类型以及如何使用...

    jedis-4.3.1

    要开始使用 Jedis,首先将其作为依赖项添加到您的 Java 项目中。如果使用 Maven: &lt;groupId&gt;redis.clients &lt;artifactId&gt;jedis &lt;version&gt;4.3.0 对于许多应用程序,最好使用连接池。实例化 Jedis 连接池: Jedis...

    Jedis API中文使用文档.-比较详细

    Jedis API中文使用文档详解 Jedis 是 Redis 官方首选的 Java 客户端开发包,用于操作 Redis 数据库。下面是 Jedis API 的详细使用文档,适合新手和老程序员进行复习。 Jedis 的基本使用 Jedis 提供了多种方式来...

Global site tag (gtag.js) - Google Analytics