1) Mongodb的非安全插入方式,在一开始插入性能是非常高的,但是在达到了两千万条数据之后性能骤减,这个时候恰巧是服务器24G内存基本占满的时候(随着测试的进行mongodb不断占据内存,一直到操作系统的内存全部占满),也就是说Mongodb的内存映射方式,使得数据全部在内存中的时候速度飞快,当部分数据需要换出到磁盘上之后,性能下降很厉害。(这个性能其实也不算太差,因为我们对三个列的数据做了索引,即使在内存满了之后每秒也能插入2MB的数据,在一开始更是每秒插入25MB数据)。Foursquare其实也是把Mongodb当作带持久化的内存数据库使用的,只是在查不到达到内存瓶颈的时候Sharding没处理好。
2) 对于批量插入功能,其实是一次提交一批数据,但是相比一次一条插入性能并没有提高多少,一来是因为网络带宽已经成为了瓶颈,二来我想写锁也会是一个原因。
3) 对于安全插入功能,相对来说比较稳定,不会波动很大,我想可能是因为安全插入是确保数据直接持久化到磁盘的,而不是插入内存就完事。
4) 对于一列条件的查询,性能一直比较稳定,别小看,每秒能有8000-9000的查询次数,每次返回10KB,相当于每秒查询80MB数据,而且数据库记录是2亿之后还能维持这个水平,性能惊人。
5) 对于二列条件返回小数据的查询,总体上性能会比4)好一点,可能返回的数据量小对性能提高比较大,但是相对来说性能波动也厉害一点,可能多了一个条件就多了一个从磁盘换页的机会。
6) 对于一列数据外加Sort和Skip的查询,在数据量大了之后性能明显就变差了(此时是索引数据量超过内存大小的时候,不知道是否有联系),我猜想是Skip比较消耗性能,不过和4)相比性能也不是差距特别大。
7) 对于返回大数据的查询,一秒瓶颈也有800次左右,也就是80M数据,这就进一步说明了在有索引的情况下,顺序查询和按条件搜索性能是相差无几的,这个时候是IO和网络的瓶颈。
8) 在整个过程中索引占的数据量已经占到了总数据量的相当大比例,在达到1亿4千万数据量的时候,光索引就可以占据整个内存,此时查询性能还是非常高,插入性能也不算太差,mongodb的性能确实很牛。
那么在来看看Sharding模式有什么亮点:
1) 非安全插入和单进程的配置一样,在内存满了之后性能急剧下降。安全插入性能和单进程相比慢不少,但是非常稳定。
2) 对于一个条件和两个条件的查询,性能都比较稳定,但条件查询性能相当于单进程的一半,但是在多条件下有的时候甚至会比单进程高一点。我想这可能是某些时候数据块位于两个Sharding,这样Mongos会并行在两个Sharding查询,然后在把数据进行合并汇总,由于查询返回的数据量小,网络不太可能成为瓶颈了,使得Sharding才有出头的机会。
3) 对于Order和Skip的查询,Sharding方式的差距就出来了,我想主要性能损失可能在Order,因为我们并没有按照排序字段作为Sharding的Key,使用的是_id作为Key,这样排序就比较难进行。
4) 对于返回大数据量的查询,Sharding方式其实和单进程差距不是很大,我想数据的转发可能是一个性能损耗的原因(虽然mongos位于打压机本机,但是数据始终是转手了一次)。
5) 对于磁盘空间的占用,两者其实是差不多的,其中的一些差距可能是因为多个进程都会多分配一点空间,加起来有的时候会比单进程多占用点磁盘(而那些占用比单进程少的地方其实是开始的编码错误,把实际数据大小和磁盘文件占用大小搞错了)。
测试最后的各个Sharding分布情况如下:
{
"sharded" : true,
"ns" : "testdb.test",
"count" : 209766143,
"size" : 214800530672,
"avgObjSize" : 1024.0000011441311,
"storageSize" : 222462757776,
"nindexes" : 4,
"nchunks" : 823,
"shards" : {
"shard0000" : {
"ns" : "testdb.test",
"count" : 69474248,
"size" : 71141630032,
"avgObjSize" : 1024.0000011515058,
"storageSize" : 74154252592,
"numExtents" : 65,
"nindexes" : 4,
"lastExtentSize" : 2146426864,
"paddingFactor" : 1,
"flags" : 1,
"totalIndexSize" : 11294125824,
"indexSizes" : {
"_id_" : 2928157632,
"Number_1" : 2832745408,
"Number1_1" : 2833974208,
"Date_-1" : 2699248576
},
"ok" : 1
},
"shard0001" : {
"ns" : "testdb.test",
"count" : 70446092,
"size" : 72136798288,
"avgObjSize" : 1024.00000113562,
"storageSize" : 74154252592,
"numExtents" : 65,
"nindexes" : 4,
"lastExtentSize" : 2146426864,
"paddingFactor" : 1,
"flags" : 1,
"totalIndexSize" : 11394068224,
"indexSizes" : {
"_id_" : 2969355200,
"Number_1" : 2826453952,
"Number1_1" : 2828403648,
"Date_-1" : 2769855424
},
"ok" : 1
},
"shard0002" : {
"ns" : "testdb.test",
"count" : 69845803,
"size" : 71522102352,
"avgObjSize" : 1024.00000114538,
"storageSize" : 74154252592,
"numExtents" : 65,
"nindexes" : 4,
"lastExtentSize" : 2146426864,
"paddingFactor" : 1,
"flags" : 1,
"totalIndexSize" : 11300515584,
"indexSizes" : {
"_id_" : 2930942912,
"Number_1" : 2835243968,
"Number1_1" : 2835907520,
"Date_-1" : 2698421184
},
"ok" : 1
}
},
"ok" : 1
}
虽然在最后由于时间的关系,没有测到10亿级别的数据量,但是通过这些数据已经可以证明Mongodb的性能是多么强劲了。另外一个原因是,在很多时候可能数据只达到千万我们就会对库进行拆分,不会让一个库的索引非常庞大。在测试的过程中还发现几个问题需要值得注意:
1) 在数据量很大的情况下,对服务进行重启,那么服务启动的初始化阶段,虽然可以接受数据的查询和修改,但是此时性能很差,因为mongodb会不断把数据从磁盘换入内存,此时的IO压力非常大。
2) 在数据量很大的情况下,如果服务没有正常关闭,那么Mongodb启动修复数据库的时间非常可观,在1.8中退出的-dur貌似可以解决这个问题,据官方说对读取没影响,写入速度会稍稍降低,有空我也会再进行下测试。
3) 在使用Sharding的时候,Mongodb时不时会对数据拆分搬迁,这个时候性能下降很厉害,虽然从测试图中看不出(因为我每一次测试都会测试比较多的迭代次数),但是我在实际观察中可以发现,在搬迁数据的时候每秒插入性能可能会低到几百条。其实我觉得能手动切分数据库就手动切分或者手动做历史库,不要依赖这种自动化的Sharding,因为一开始数据就放到正确的位置比分隔再搬迁效率不知道高多少。个人认为Mongodb单数据库存储不超过1亿的数据比较合适,再大还是手动分库吧。
4) 对于数据的插入,如果使用多线程并不会带来性能的提高,反而还会下降一点性能(并且可以在http接口上看到,有大量的线程处于等待)。
5) 在整个测试过程中,批量插入的时候遇到过几次连接被远程计算机关闭的错误,怀疑是有的时候Mongodb不稳定关闭了连接,或是官方的C#客户端有BUG,但是也仅仅是在数据量特别大的时候遇到几次。
最新补充:在之后我又进行了几天测试,把测试数据量进一步加大到5亿,总磁盘占用超过500G,发现和2亿数据量相比,所有性能都差不多,只是测试6和测试7在超过2亿级别数据之后,每400万记录作为一个循环,上下波动30%的性能,非常有规律。
分享到:
相关推荐
MongoDB性能测试报告详细分析了在大数据量环境下,包括GridFS和组合索引在内的性能表现。通过对5亿数据级别的插入与查询进行测试,本报告旨在探讨不同索引配置、数据量、查询方式等因素对性能的影响。 首先,测试在...
#### MongoDB性能测试结果分析 **用例1**: 对于单次提交10000条记录,每次提交1000次的情况,MongoDB耗时1622.02秒完成操作。在此过程中,CPU使用率提升了10%至20%,内存使用增加了3GB。与MySQL相比,MongoDB在大...
### MySQL与MongoDB性能对比分析 #### 测试背景与目的 随着大数据时代的到来,数据库的选择对系统的性能至关重要。本报告旨在通过一系列实验对比MySQL和MongoDB两种不同类型的数据库(关系型数据库与NoSQL数据库)...
这个“mongodb-测试数据”压缩包显然包含了一些用于测试MongoDB功能的样例数据集,特别是针对增、删、改、查(CRUD)操作的学习和性能测试。 在深入探讨MongoDB的测试数据之前,我们先来了解一下MongoDB的基本概念...
MongoDB性能调优 MongoDB 作为一种 Nosql 数据库,在网站开发中应用越来越广泛。然而,MongoDB 的性能调优是一件非常重要的事情。本文将描述如何对 MongoDB 进行性能调优,提高 MongoDB 的查询效率和执行速度。 ...
MongoDB的性能测试是确保系统能够满足业务需求的关键步骤,它可以帮助开发者优化数据库配置,提升应用的响应时间和整体性能。 "MongoDB 性能 测试.pdf"可能包含了以下关键知识点: 1. **MongoDB性能基准测试**:这...
linux下安装配置MongoDB (软件测试)
在“MongoDB TPCC事务性能基准测试”中,我们关注的是如何评估MongoDB在处理事务处理能力上的表现,特别是针对TPCC(Transaction Processing Performance Council C)基准测试。TPCC是一个广泛采用的在线事务处理...
在这个场景中,我们关注的是一个Java客户端,它被设计用于并发访问MongoDB数据库并进行性能测试。这个客户端涵盖了三个主要操作:查询、修改和插入,这些都是数据库操作中的基本且重要的功能。 首先,让我们深入...
NoSQL数据库技术由于其高可扩展性和对大数据实时处理能力的支持,在近年来获得了快速的发展。...随着技术的不断进步和应用场景的日益丰富,类似的性能测试报告对于指导实际应用和产品选择具有非常重要的参考价值。
在这个“MongoDB集群测试代码”中,我们关注的是MongoDB的两个关键特性:副本集(Replica Set)和分片(Sharding),以及如何通过配置文件和脚本来进行集群的设置与测试。 1. **副本集(Replica Set)**: - 副本...
以下是一些关于MongoDB性能优化和特性的重要知识点: 1. **数据模型**: MongoDB 支持非关系型数据模型,允许存储类似JSON的文档结构,如示例中的`{first_name: ‘Paul’, surname: ‘Miller’, city: ‘London’,...
之后,根据系统资源情况配置硬件参数,例如CPU、内存、网卡和硬盘的数量及配置,确保在测试环境中能够体验到MongoDB的性能。 MongoDB的单机数据库服务器安装还包括配置操作系统主机表和机器名称。编辑“/etc/hosts...
在这个性能测试中,我们关注的是在MongoDB中存储1亿条记录时的随机查询性能。测试环境是基于CentOS 6.4的64位操作系统,硬件配置包括一颗Intel Xeon E5-2630 2.30GHz处理器、64GB内存和6块10K转速硬盘组成的RAID0...