`
378629846
  • 浏览: 216027 次
  • 性别: Icon_minigender_1
  • 来自: 哈尔滨
社区版块
存档分类
最新评论

使用zookeeper实现分布式共享锁

阅读更多

分布式系统中经常需要协调多进程,多个jvm,或者多台机器之间的同步问题,得益于zookeeper,实现了一个分布式的共享锁,方便在多台服务器之间竞争资源时,来协调各系统之间的协作和同步。

package com.concurrent;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooDefs;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.data.Stat;

/**
  	DistributedLock lock = null;
	try {
		lock = new DistributedLock("127.0.0.1:2182","test");
		lock.lock();
		//do something...
	} catch (Exception e) {
		e.printStackTrace();
	} 
	finally {
		if(lock != null)
			lock.unlock();
	}
 * @author xueliang
 *
 */
public class DistributedLock implements Lock, Watcher{
	private ZooKeeper zk;
	private String root = "/locks";//根
	private String lockName;//竞争资源的标志
	private String waitNode;//等待前一个锁
	private String myZnode;//当前锁
	private CountDownLatch latch;//计数器
	private int sessionTimeout = 30000;
	private List<Exception> exception = new ArrayList<Exception>();
	
	/**
	 * 创建分布式锁,使用前请确认config配置的zookeeper服务可用
	 * @param config 127.0.0.1:2181
	 * @param lockName 竞争资源标志,lockName中不能包含单词lock
	 */
	public DistributedLock(String config, String lockName){
		this.lockName = lockName;
		// 创建一个与服务器的连接
		 try {
			zk = new ZooKeeper(config, sessionTimeout, this);
			Stat stat = zk.exists(root, false);
			if(stat == null){
				// 创建根节点
				zk.create(root, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE,CreateMode.PERSISTENT); 
			}
		} catch (IOException e) {
			exception.add(e);
		} catch (KeeperException e) {
			exception.add(e);
		} catch (InterruptedException e) {
			exception.add(e);
		}
	}

	/**
	 * zookeeper节点的监视器
	 */
	public void process(WatchedEvent event) {
		if(this.latch != null) {  
            this.latch.countDown();  
        }
	}
	
	public void lock() {
		if(exception.size() > 0){
			throw new LockException(exception.get(0));
		}
		try {
			if(this.tryLock()){
				System.out.println("Thread " + Thread.currentThread().getId() + " " +myZnode + " get lock true");
				return;
			}
			else{
				waitForLock(waitNode, sessionTimeout);//等待锁
			}
		} catch (KeeperException e) {
			throw new LockException(e);
		} catch (InterruptedException e) {
			throw new LockException(e);
		} 
	}

	public boolean tryLock() {
		try {
			String splitStr = "_lock_";
			if(lockName.contains(splitStr))
				throw new LockException("lockName can not contains \\u000B");
			//创建临时子节点
			myZnode = zk.create(root + "/" + lockName + splitStr, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE,CreateMode.EPHEMERAL_SEQUENTIAL);
			System.out.println(myZnode + " is created ");
			//取出所有子节点
			List<String> subNodes = zk.getChildren(root, false);
			//取出所有lockName的锁
			List<String> lockObjNodes = new ArrayList<String>();
			for (String node : subNodes) {
				String _node = node.split(splitStr)[0];
				if(_node.equals(lockName)){
					lockObjNodes.add(node);
				}
			}
			Collections.sort(lockObjNodes);
			System.out.println(myZnode + "==" + lockObjNodes.get(0));
			if(myZnode.equals(root+"/"+lockObjNodes.get(0))){
				//如果是最小的节点,则表示取得锁
	            return true;
	        }
			//如果不是最小的节点,找到比自己小1的节点
			String subMyZnode = myZnode.substring(myZnode.lastIndexOf("/") + 1);
			waitNode = lockObjNodes.get(Collections.binarySearch(lockObjNodes, subMyZnode) - 1);
		} catch (KeeperException e) {
			throw new LockException(e);
		} catch (InterruptedException e) {
			throw new LockException(e);
		}
		return false;
	}

	public boolean tryLock(long time, TimeUnit unit) {
		try {
			if(this.tryLock()){
				return true;
			}
	        return waitForLock(waitNode,time);
		} catch (Exception e) {
			e.printStackTrace();
		}
		return false;
	}

	private boolean waitForLock(String lower, long waitTime) throws InterruptedException, KeeperException {
        Stat stat = zk.exists(root + "/" + lower,true);
        //判断比自己小一个数的节点是否存在,如果不存在则无需等待锁,同时注册监听
        if(stat != null){
        	System.out.println("Thread " + Thread.currentThread().getId() + " waiting for " + root + "/" + lower);
        	this.latch = new CountDownLatch(1);
        	this.latch.await(waitTime, TimeUnit.MILLISECONDS);
        	this.latch = null;
        }
        return true;
    }

	public void unlock() {
		try {
			System.out.println("unlock " + myZnode);
			zk.delete(myZnode,-1);
			myZnode = null;
			zk.close();
		} catch (InterruptedException e) {
			e.printStackTrace();
		} catch (KeeperException e) {
			e.printStackTrace();
		}
	}

	public void lockInterruptibly() throws InterruptedException {
		this.lock();
	}

	public Condition newCondition() {
		return null;
	}
	
	public class LockException extends RuntimeException {
		private static final long serialVersionUID = 1L;
		public LockException(String e){
			super(e);
		}
		public LockException(Exception e){
			super(e);
		}
	}

}

 多线程的并发测试要复杂很多,下面是一个使用CountDownLatch实现的并发测试工具,可以简单模拟一些并发场景

package com.concurrent;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;

/**
  ConcurrentTask[] task = new ConcurrentTask[5];
  for(int i=0;i<task.length;i++){
  	   task[i] = new ConcurrentTask(){
 			public void run() {
 				System.out.println("==============");
 				
 			}};
  }
  new ConcurrentTest(task);
 * @author xueliang
 *
 */
public class ConcurrentTest {
	private CountDownLatch startSignal = new CountDownLatch(1);//开始阀门
	private CountDownLatch doneSignal = null;//结束阀门
	private CopyOnWriteArrayList<Long> list = new CopyOnWriteArrayList<Long>();
	private AtomicInteger err = new AtomicInteger();//原子递增
	private ConcurrentTask[] task = null;
	
	public ConcurrentTest(ConcurrentTask... task){
		this.task = task;
		if(task == null){
			System.out.println("task can not null");
			System.exit(1);
		}
		doneSignal = new CountDownLatch(task.length);
		start();
	}
	/**
	 * @param args
	 * @throws ClassNotFoundException 
	 */
	private void start(){
		//创建线程,并将所有线程等待在阀门处
		createThread();
		//打开阀门
		startSignal.countDown();//递减锁存器的计数,如果计数到达零,则释放所有等待的线程
		try {
			doneSignal.await();//等待所有线程都执行完毕
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		//计算执行时间
		getExeTime();
	}
	/**
	 * 初始化所有线程,并在阀门处等待
	 */
	private void createThread() {
		long len = doneSignal.getCount();
		for (int i = 0; i < len; i++) {
			final int j = i;
			new Thread(new Runnable(){
				public void run() {
					try {
						startSignal.await();//使当前线程在锁存器倒计数至零之前一直等待
						long start = System.currentTimeMillis();
						task[j].run();
						long end = (System.currentTimeMillis() - start);
						list.add(end);
					} catch (Exception e) {
						err.getAndIncrement();//相当于err++
					} 
					doneSignal.countDown();
				}
			}).start();
		}
	}
	/**
	 * 计算平均响应时间
	 */
	private void getExeTime() {
		int size = list.size();
		List<Long> _list = new ArrayList<Long>(size);
		_list.addAll(list);
		Collections.sort(_list);
		long min = _list.get(0);
		long max = _list.get(size-1);
		long sum = 0L;
		for (Long t : _list) {
			sum += t;
		}
		long avg = sum/size;
		System.out.println("min: " + min);
		System.out.println("max: " + max);
		System.out.println("avg: " + avg);
		System.out.println("err: " + err.get());
	}
	
	public interface ConcurrentTask {
		void run();
	}

}

 下面使用这个工具来测试一下我们的分布式共享锁

package com.concurrent;

import com.concurrent.ConcurrentTest.ConcurrentTask;

public class ZkTest {
	public static void main(String[] args) {
		Runnable task1 = new Runnable(){
			public void run() {
				DistributedLock lock = null;
				try {
					lock = new DistributedLock("127.0.0.1:2182","test1");
					//lock = new DistributedLock("127.0.0.1:2182","test2");
					lock.lock();
					Thread.sleep(3000);
					System.out.println("===Thread " + Thread.currentThread().getId() + " running");
				} catch (Exception e) {
					e.printStackTrace();
				} 
				finally {
					if(lock != null)
						lock.unlock();
				}
				
			}
			
		};
		new Thread(task1).start();
		try {
			Thread.sleep(1000);
		} catch (InterruptedException e1) {
			e1.printStackTrace();
		}
		ConcurrentTask[] tasks = new ConcurrentTask[10];
		for(int i=0;i<tasks.length;i++){
			ConcurrentTask task3 = new ConcurrentTask(){
				public void run() {
					DistributedLock lock = null;
					try {
						lock = new DistributedLock("127.0.0.1:2183","test2");
						lock.lock();
						System.out.println("Thread " + Thread.currentThread().getId() + " running");
					} catch (Exception e) {
						e.printStackTrace();
					} 
					finally {
						lock.unlock();
					}
					
				}
			};
			tasks[i] = task3;
		}
		new ConcurrentTest(tasks);
	}
}

 测试结果:

/locks/test1_lock_0000004356 is created 
/locks/test1_lock_0000004356==test1_lock_0000004356
Thread 8 /locks/test1_lock_0000004356 get lock true
/locks/test2_lock_0000004357 is created 
/locks/test2_lock_0000004359 is created 
/locks/test2_lock_0000004358 is created 
/locks/test2_lock_0000004363 is created 
/locks/test2_lock_0000004361 is created 
/locks/test2_lock_0000004360 is created 
/locks/test2_lock_0000004362 is created 
/locks/test2_lock_0000004366 is created 
/locks/test2_lock_0000004365 is created 
/locks/test2_lock_0000004364 is created 
/locks/test2_lock_0000004357==test2_lock_0000004357
Thread 14 /locks/test2_lock_0000004357 get lock true
Thread 14 running
unlock /locks/test2_lock_0000004357
/locks/test2_lock_0000004358==test2_lock_0000004357
/locks/test2_lock_0000004361==test2_lock_0000004357
/locks/test2_lock_0000004359==test2_lock_0000004357
/locks/test2_lock_0000004362==test2_lock_0000004357
Thread 12 waiting for /locks/test2_lock_0000004360
/locks/test2_lock_0000004366==test2_lock_0000004357
Thread 18 waiting for /locks/test2_lock_0000004357
/locks/test2_lock_0000004363==test2_lock_0000004357
Thread 18 running
unlock /locks/test2_lock_0000004358
Thread 13 waiting for /locks/test2_lock_0000004362
/locks/test2_lock_0000004365==test2_lock_0000004358
Thread 16 waiting for /locks/test2_lock_0000004361
Thread 19 waiting for /locks/test2_lock_0000004358
/locks/test2_lock_0000004360==test2_lock_0000004358
Thread 15 waiting for /locks/test2_lock_0000004365
/locks/test2_lock_0000004364==test2_lock_0000004358
Thread 11 waiting for /locks/test2_lock_0000004364
Thread 20 waiting for /locks/test2_lock_0000004359
Thread 19 running
unlock /locks/test2_lock_0000004359
Thread 17 waiting for /locks/test2_lock_0000004363
Thread 20 running
unlock /locks/test2_lock_0000004360
Thread 12 running
unlock /locks/test2_lock_0000004361
Thread 16 running
unlock /locks/test2_lock_0000004362
Thread 13 running
unlock /locks/test2_lock_0000004363
Thread 17 running
unlock /locks/test2_lock_0000004364
Thread 11 running
unlock /locks/test2_lock_0000004365
Thread 15 running
unlock /locks/test2_lock_0000004366
min: 506
max: 1481
avg: 968
err: 0
===Thread 8 running
unlock /locks/test1_lock_0000004356

 

关于zookeeper的很好的文章:

https://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/

这个分布式共享锁就是参考这篇文章实现的。

1
0
分享到:
评论

相关推荐

    基于zookeeper的分布式锁简单实现

    - **测试代码**:展示了如何在实际应用中使用Zookeeper实现分布式锁的示例,包括创建锁、获取锁、释放锁以及异常处理等操作。 - **实用工具类**:封装了与Zookeeper交互的常用方法,如创建节点、设置监听、检查节点...

    基于zookeeper的分布式锁实现demo

    4. **锁节点的创建与检查:** 示例代码中创建了两个锁节点`/ExclusiveLockDemo`和`/ShardLockDemo`,分别用于实现非共享和共享锁。 5. **锁的等待机制:** `CountDownLatch`被用来阻塞锁获取操作,直到监听到锁可用...

    zookeeper的分布式全局锁纯代码解决方案

    分布式全局锁是分布式系统中一个重要的同步控制工具,它允许在多节点环境下,对共享资源进行独占式访问,防止并发问题。Zookeeper,作为Apache的一个高性能、高可用的分布式协调服务,常被用于实现这样的功能。在这...

    基于zookeeper实现的分布式读写锁

    在分布式系统中,数据一致性是至关重要的,而实现这一目标的一种常见方法是使用分布式锁。本文将深入探讨基于Zookeeper实现的分布式读写锁,并利用Zkclient客户端进行操作。Zookeeper是一个分布式服务协调框架,它...

    zookeeper做分布式锁

    在实际项目中,可以使用Java的ZooKeeper客户端库(如Curator)来简化分布式锁的实现。这些库提供了高级API,帮助开发者更方便地处理ZooKeeper的操作,例如创建、删除节点,以及设置节点监视器等。 总之,ZooKeeper...

    java使用zookeeper实现的分布式锁示例

    本文将详细讲解如何使用Java与Apache ZooKeeper实现一个分布式锁的示例。 ZooKeeper是一个分布式协调服务,它提供了一种可靠的方式来管理和同步分布式系统的数据。在分布式锁的场景中,ZooKeeper可以作为一个中心化...

    zookeeper分布式锁实现和客户端简单实现

    **Zookeeper的分布式锁实现原理** 1. **节点创建与监视**: Zookeeper允许客户端创建临时节点,这些节点会在客户端断开连接时自动删除。分布式锁的实现通常会为每个请求创建一个临时顺序节点,按照创建的顺序形成一...

    zookeeper分布式锁实例源码

    在这个场景下,我们将关注ZooKeeper如何实现分布式锁,特别是不可重入锁、可重入锁以及可重入读写锁的概念与实践。 首先,我们要理解什么是分布式锁。在多节点并发访问共享资源时,分布式锁能确保同一时刻只有一个...

    ZooKeeper-分布式过程协同技术详解-最新版

    Zookeeper的核心理念是通过一个中心化的服务器集群来维护共享状态,使得分布式系统中的各个节点可以高效、一致地获取和更新数据。它基于一个叫做ZNode的数据结构模型,每个ZNode都是一个路径,可以存储数据,并且...

    zookeeper实现分布式锁

    Zookeeper 实现分布式锁是指使用 Zookeeper 来管理分布式环境中的共享资源,实现互斥访问,以保证数据的一致性。 分布式锁的介绍 分布式锁是指在分布式环境中保护跨进程、跨主机、跨网络的共享资源,实现互斥...

    Zookeeper 分布式重入排它锁实现

    在Zookeeper中,可以通过创建多个顺序节点来实现,每个读请求创建一个节点,所有读请求节点共享锁。 2. **互斥锁(写锁)**:只允许一个线程写入,不允许读取和其他写入。这与排他锁类似,通过创建临时节点并监听...

    如何操作Redis和zookeeper实现分布式锁

    如何操作Redis和zookeeper实现分布式锁 在分布式场景下,有很多种情况都需要实现最终一致性。在设计远程上下文的领域事件的时候,为了保证最终一致性,在通过领域事件进行通讯的方式中,可以共享存储(领域模型和...

    陶隽-基于Apache Zookeeper的分布式协调原理及应用

    在Spring XD中使用ZooKeeper可以实现分布式环境下的协调,例如在集群中管理服务的分布和任务分配。 对于领导者选举,ZooKeeper提供了一种无需羊群效应(Herd Effect)的锁机制。这种锁的实现依赖于临时顺序节点的...

    zk分布式锁1

    ZooKeeper是一个广泛使用的分布式锁实现方案,本文将对ZooKeeper分布式锁进行详细的介绍。 什么是分布式锁 分布式锁是指在分布式系统中,多个节点之间对共享资源的访问控制机制。分布式锁可以确保在分布式环境中,...

    ZookeeperNet实现分布式锁

    通过深入理解Zookeeper的工作原理以及ZookeeperNet库的使用,开发者可以有效地在C#环境中实现高可用的分布式锁,保障多节点之间的协同工作和数据一致性。在实际项目中,分布式锁可以广泛应用于数据库操作、并发任务...

    ZooKeeper-分布式过程协同技术详解.rar

    4. **分布式锁**:ZooKeeper可以实现分布式锁,确保在多线程或分布式环境下,对共享资源的访问有序且互斥。 5. **领导者选举**:ZooKeeper的ZAB协议可以用于分布式环境中的领导者选举,确保集群的高可用性。 **三...

    zookeeper分布式锁

    分布式锁是一种在分布式系统中实现同步的技术,它允许多个节点在同一时间访问共享资源。在大型分布式环境中,确保数据的一致性和正确性至关重要,这就是分布式锁发挥作用的地方。Zookeeper,一个由Apache开发的...

    ZooKeeper分布式过程协同技术详解

    - **分布式锁**:通过特定的ZNode结构,实现共享锁服务。 - **队列服务**:FIFO(先进先出)的队列可以通过ZNode的顺序创建实现。 3. **ZooKeeper的架构** - **客户端-服务器模型**:每个客户端连接到一个或多个...

    ZooKeeper-分布式过程协同技术详解(高清PDF)

    分布式锁用于在多个进程中控制对共享资源的访问;主选举是确定集群中某个角色的唯一领导者。 书中详细介绍了ZooKeeper的数据模型,这是一个层次化的命名空间,类似于文件系统,由节点(ZNode)构成,每个节点可以...

Global site tag (gtag.js) - Google Analytics