- 浏览: 1076330 次
- 性别:
- 来自: 杭州
文章分类
- 全部博客 (399)
- C++ (39)
- Java (74)
- Java界面开发学习笔记 (4)
- Java用户的c++之旅 (0)
- 自言自语 (12)
- DSP (1)
- MCU (0)
- CG (0)
- Jabber (0)
- Gloox (0)
- Linux (11)
- Windows (19)
- Networks (4)
- Jobs (0)
- PHP (1)
- JSP (2)
- 生活 (35)
- C (2)
- Qt4 (2)
- C# (50)
- WPF (5)
- ASP (2)
- FLEX (47)
- SQL (20)
- JavaScript (12)
- SharePoint (6)
- GWT (1)
- Dojo (9)
- HTML (11)
- Others (7)
- 如何安装配置系列 (7)
- UML (2)
- Android (3)
- alibaba (1)
最新评论
-
zxjlwt:
学习了http://surenpi.com
Firefox插件开发: Hello World! -
ylldzz:
楼主知道MVEL怎么调试么
MVEL简介及快速使用 -
blueman2012:
您好,可否提供源码下载,我把您的代码贴过来后,好多报错的,谢谢 ...
Log4J日志解析 -
svygh123:
你的游标都没有关闭呢!
MYSQL游标嵌套循环示例 -
dizh:
写的很好啊
MVEL简介及快速使用
主题索引:
一、剖析C++标准库智能指针(std::auto_ptr)
1.Do you Smart Pointer?
2.std::auto_ptr的设计原理
3.std::auto_ptr高级使用指南
4.你是否觉得std::auto_ptr还不够完美?
二、C++条件,寻找构造更强大的智能指针(Smart Pointer)的策略
1.支持引用记数的多种设计策略
2.支持处理多种资源
3.支持Subclassing
4.支持多线程条件下,线程安全的多种设计策略
5.其它多种特殊要求下,再构造
三、Generic Programming基础技术和Smart Pointer
1.回首处理资源中的Traits技术
2.回首多线程支持的设计
四、COM实现中,Smart Pointer设计原理
五、著名C++库(标准和非标准)中的Smart Pointer现状
---------------------------------------------------------------------
一、剖析C++标准库智能指针(std::auto_ptr)
1.Do you Smart Pointer?
Smart Pointer,中文名:智能指针, 舶来品?
不可否认,资源泄露(resource leak)曾经是C++程序的一大噩梦.垃圾回收
机制(Garbage Collection)一时颇受注目.然而垃圾自动回收机制并不能
满足内存管理的即时性和可视性,往往使高傲的程序设计者感到不自在.
况且,C++实现没有引入这种机制.在探索中,C++程序员创造了锋利的
"Smart Pointer".一定程度上,解决了资源泄露问题.
也许,经常的,你会写这样的代码:
//x拟为class:
// class x{
// public:
// int m_Idata;
// public:
// x(int m_PARAMin):m_Idata(m_PARAMin){}
// void print(){ cout<<m_Idata<<endl; }
// .....
// }
//
void fook(){
x* m_PTRx = new A(m_PARAMin);
m_PTRx->DoSomething(); //#2
delete m_PTRx;
}
是的,这里可能没什么问题.可在复杂、N行、m_PTRclassobj所指对象生命周
期要求较长的情况下,你能保证你不会忘记delete m_PTRclassobj吗?生活中,
我们往往不应该有太多的口头保证,我们需要做些真正有用的东西.还有一个
更敏感的问题:异常.假如在#2方法执行期异常发生,函数执行终止,那么new
出的对象就会泄露.于是,你可能会说:那么就捕获异常来保证安全性好了.
你写这样的程式:
void fook(){
A* m_PTRx = new A(m_PARAMin);
try{
m_PTRx->DoSomething();
}
catch(..){
delete m_PTRx;
throw;
}
delete m_PTRx;
}
哦!天哪!想象一下,你的系统,是否会象专为捕获异常而设计的.
一天,有人给你建议:"用Smart Pointer,那很安全.".你可以这样重写你的程序:
void fook(){
auto_ptr<x> m_SMPTRx(new x(m_PARAMin));
m_SMPTRx->DoSomething();
}
OK!你不太相信.不用delete吗?
是的.不用整天提心吊胆的问自己:"我全部delete了吗?",而且比你的delete
策略更安全.
然后,还有人告诉你,可以这样用呢:
ok1.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
auto_ptr<x> m_SMPTR2(m_SMPTR1); //#2
May be you can code #2 like this :
auto_ptr<x> m_SMPTR2;
m_SMPTR2 = m_SMPTR1;
ok2.
auto_ptr<int> m_SMPTR1(new int(32));
ok3.
auto_ptr<int> m_SMPTR1;
m_SMPTR1 = auto_ptr<int>(new int(100));
也可以:
auto_ptr<int> m_SMPTR1(auto_ptr<int>(new int(100)));
ok4.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
m_SMPTR1.reset(new x(m_PARAMin1));
ok5.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
auto_ptr<x> m_SMPTR2(m_SMPTR.release());
cout<<(*m_SMPTR2).m_Idata<<endl;
ok6.
auto_ptr<int> fook(){
return auto<int>(new int(100));
}
ok7.............and so on
但不可这样用:
no1.
char* chrarray = new char[100];
strcpy(chrarray,"I am programming.");
auto_ptr<char*> m_SMPTRchrptr(chrarray);
//auto_ptr并不可帮你管理数组资源
no2.
vector<auto_ptr<x>> m_VECsmptr;
m_VECsmptr.push_back(auto_ptr<int>(new int(100)));
//auto_ptr并不适合STL内容.
no3.
const auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR(new x(200));
no4.
x m_OBJx(300);
auto_ptr<x> m_SMPTR(&m_OBJx);
no5
x* m_PTR = new x(100);
auto_ptr<x> m_SMPTR = m_pTR;
no6..........and so on
预先提及所有权的问题,以便下面带着疑问剖析代码?
power1.
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
power2.
auto_ptr<x> m_SMPTR(new x(100));
auto_ptr<x> returnfun(auto_ptr<x> m_SMPTRin){
return m_SMPTRin;
}
auto_ptr<x> = returnfun(m_SMPTR); //#5
//在上面的#5中,我要告诉你对象所有权转移了两次.
//什么叫对象所有权呢?
2. std::auto_ptr的设计原理
上面的一片正确用法,它们在干些什么?
一片非法,它们犯了什么罪?
一片什么所有权转移,它的内部机智是什么?
哦!一头雾水?下面我们就来剖析其实现机制.
基础知识:
a.智能指针的关键技术:在于构造栈上对象的生命期控制
堆上构造的对象的生命期.因为在智能指针的内部,存储
着堆对象的指针,而且在构析函数中调用delete行为.
大致机构如下:
x* m_PTRx = new x(100);//#1
template<typename T>
auto_ptr{
private:
T* m_PTR;//维护指向堆对象的指针,在auto_ptr定位后
.... //它应该指向#1构造的对象,即拥有所有权.
~auto(){ delete m_PTR; }
....
}
b.所有权转移之说
上面曾有一非法的程式片段如下:
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
按常理来说,m_SMPTR->print();怎么是非法的呢?
那是因为本来,m_SMPTR1维护指向new x(100)的指针,
可是m_SMPTR2 = m_SMPTR1;auto_ptr内部机制使得m_SMPTR1将对象的地址
传给m_SMPTR2,而将自己的对象指针置为0.
那么自然m_SMPTR->print();失败.
这里程序设计者要负明显的职责的.
那么auto_ptr为什么采取这样的策略:保证所有权的单一性.
亦保证了系统安全性.
如果多个有全权的auto_ptr维护一个对象,那么在你消除一个
auto_ptr时,将导致多个auto_ptr的潜在危险.
下面我们以SGI-STL的auto_ptr设计为样本(去掉了无关分析的宏),来剖析其原理.
#1 template <class _Tp> class auto_ptr {
#2 private:
#3 _Tp* _M_ptr; //定义将维护堆对象的指针
#4 public:
#5 typedef _Tp element_type; //相关类型定义
#6 explicit auto_ptr(_Tp* __p = 0) __STL_NOTHROW : _M_ptr(__p) {}
#7 auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) {}
#8 template <class _Tp1> auto_ptr(auto_ptr<_Tp1>& __a) __STL_NOTHROW
: _M_ptr(__a.release()) {}
//#6、#7、#8是auto_ptr构造函数的三个版本.
//#6注释:传入对象的指针,构造auto_ptr.explicit关键字:禁止隐式转换.
// 这就是ok2正确,而no5(隐式转换)错误的原因.
//#7注释:拷贝构造函数.
// 传入auto_ptr实例,构造auto_ptr. ok1、ok3使用了这个构造式.
// 它是一个很关键的构造函数,在具体情况下,我们再分析
//#8注释:auto_ptr的模板成员,可在继承对象重载的基础上,实现特殊功能.
//
// 举例:
// class A{ public:
// virtual void fook(){cout<<"I am programming"<<endl;
// /*..........*/ };
// class B : public A {
// virtual void fook(){ cout<<"I am working"<<endl;
// /*...........*/ };
// auto_ptr<A> m_SMPTRa(new A(33));//实质:
// auto_ptr<B> m_SMPTRb(m_SMPTRa); //基类的指针可以赋给派生类的指针
//
// auto_ptr<B> m_SMPTRb(new B(44));//实质:
// auto_ptr<A> m_SMPTRa(m_SMPTRb); //派生类的指针不可赋给基类的指针
//
// auto_ptr<A> m_SMPTRa(new B(33)); // ok!
// m_SMPTRa->fook()将调用派生类B的fook()
// m_SMPTRa->A::fook()将调用基类A的fook()
//
// auto_ptr<B> m_SMPTRb(new A(33)); // wrong!
//
//
#9 auto_ptr& operator=(auto_ptr& __a) __STL_NOTHROW {
#10 if (&__a != this) { delete _M_ptr; _M_ptr = __a.release(); }
#11 return *this;
#12 }
#13 template <class _Tp1>
#14 auto_ptr& operator=(auto_ptr<_Tp1>& __a) __STL_NOTHROW {
#15 if (__a.get() != this->get()) { delete _M_ptr; _M_ptr = __a.release(); }
#16 return *this;
#16 }
//
// #9~~#16 两个版本的指派函数.
// delete _M_ptr; 在指派前,销毁原维护的对象.
// _a.release() ; release操作,详细代码参见#20~~#23.
// 用于*this获得被指派对象,
// 且将原维护auto_ptr置空.
// no3使用了第一种指派.
// 而权限转移正是_a.release()的结果.
#17 ~auto_ptr() __STL_NOTHROW { delete _M_ptr; }
//构析函数.消除对象.注意这里对对象的要求!
#17 _Tp& operator*() const __STL_NOTHROW { return *_M_ptr; }
#18 _Tp* operator->() const __STL_NOTHROW { return _M_ptr; }
#19 _Tp* get() const __STL_NOTHROW { return _M_ptr; }
//
// 操作符重载.
// #17注释:提领操作(dereference),获得对象. 见ok5用法.
// #18注释:成员运算符重载,返回对象指针.
// #19注释:普通成员函数.作用同于重载->运算符
//
#20 _Tp* release() __STL_NOTHROW {
#21 _Tp* __tmp = _M_ptr;
#22 _M_ptr = 0;
#23 return __tmp; }
//上面已经详解
#24 void reset(_Tp* __p = 0) __STL_NOTHROW {
#25 delete _M_ptr;
#26 _M_ptr = __p; }
//
//传入对象指针,改变auto_ptr维护的对象
// 且迫使auto_ptr消除原来维护的对象
// 见ok3用法.
// According to the C++ standard, these conversions are required. Most
// present-day compilers, however, do not enforce that requirement---and,
// in fact, most present-day compilers do not support the language
// features that these conversions rely on.
//下面这片段用于类型转化,目前没有任何编译器支持
//具体技术细节不诉.
#ifdef __SGI_STL_USE_AUTO_PTR_CONVERSIONS
#27 private:
#28 template<class _Tp1>
#29 struct auto_ptr_ref { _Tp1* _M_ptr; auto_ptr_ref(_Tp1* __p) : _M_ptr(__p) {}
};
#30 public:
#31 auto_ptr(auto_ptr_ref<_Tp> __ref) __STL_NOTHROW
: _M_ptr(__ref._M_ptr) {}
#32 template <class _Tp1>
#33 operator auto_ptr_ref<_Tp1>() __STL_NOTHROW
#34 { return auto_ptr_ref<_Tp>(this->release()); }
#35 template <class _Tp1> operator auto_ptr<_Tp1>() __STL_NOTHROW
#36 { return auto_ptr<_Tp1>(this->release()); }
#37 #endif /* __SGI_STL_USE_AUTO_PTR_CONVERSIONS */
#38 };
OK!就是这样了.
正如上面原理介绍处叙说,
你需要正视两大特性:
1.构造栈对象的生命期控制堆上构造的对象的生命期
2.通过release来保证auto_ptr对对象的独权.
在我们对源码分析的基础上,重点看看:
no系列错误在何处?
no1.
我们看到构析函数template<class _Tp>
~auto_ptr() _STL_NOTHROW
{ delete _M_ptr; }
所以它不能维护数组,
维护数组需要操作:delete[] _M_ptr;
no2.
先提部分vector和auto_ptr代码:
a.提auto_ptr代码
auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) {}
b.提vector代码
Part1:
void push_back(const _Tp& __x) {
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
Part2:
template <class _T1, class _T2>
inline void construct(_T1* __p,
//++++++++++++++++++++++++++++++++
// const _T2& __value) { +
//++++++++++++++++++++++++++++++++
// new (__p) _T1(__value); +
//++++++++++++++++++++++++++++++++
}
Part3.
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux
(iterator __position,
//++++++++++++++++++++++++++++++++
// const _Tp& __x) ++
//++++++++++++++++++++++++++++++++
{
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, *(_M_finish - 1));
++_M_finish;
//++++++++++++++++++++++++++++++++
// _Tp __x_copy = __x; +
//++++++++++++++++++++++++++++++++
copy_backward(__position, _M_finish - 2, _M_finish - 1);
*__position = __x_copy;
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy
(_M_start, __position, __new_start);
construct(__new_finish, __x);
++__new_finish;
__new_finish = uninitialized_copy
(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
从提取的vector代码,Part1可看出,push_back的操作行为.
兵分两路,可是再向下看,你会发现,无一例外,都
通过const _Tp& 进行拷贝行为,那么从auto_ptr提出的片段就
派上用场了.
可你知道的,auto_ptr总是坚持对对象的独权.那必须修改
原来维护的对象,而vector行为要求const _Tp&,这样自然会产生
问题.一般编译器是可以发觉这种错误的.
其实,STL所有的容器类都采用const _Tp&策略.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 看了sutter和Josuttis的两篇文章中,都提及: +
+ STL容器不支持auto_ptr原因在于copy的对象只是获得所有权的对象, +
+ 这种对象不符合STL的要求.可是本人总感觉即时不是真正的复制对象,+
+ 但我用vector<auto_ptr<x> >的目的就在于维护对象,并不在乎 +
+ 所谓的完全对象.而且我用自己写的Smart Pointer配合STL容器工作, +
+ 很正常.那需要注意的仅仅是const问题. +
+ +
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
no3.
这个也是auto_ptr隐含的所有权问题引起的.
const auto_ptr不允许修改.
随便提及:const对象不代表对象一点不可以改变.
在两种const语义下,都有方法修改对象或对象内部指针维护的对象
或其它资源.
no4.
再看auto_ptr的构析函数.
delete不可以消除栈上资源.
no5.
依赖传入对象指针的构造函数被声明为explicit,禁止隐式转换.
3.auto_ptr高级使用指南
a.类成员auto_ptr,禁止构造函数以构建"完全对象"
Programme1:
struct Structx{
int m_Idata;
char m_CHRdata;
/* and so on */
};
出于对象编程的理念,
我们将Structx打造成包裹类:
class StructWrapper{
private:
Structx* m_STRTxptr;
public:
StructWrapper():m_STRTxptr(new Structx){}
~StructWrapper(){delete m_SMRTxptr; }
public:
void Soperator1(){ /* 针对Structx对象的特性操作 */}
void Soperator2(){ /* 针对Structx对象的特性操作 */}
/* and so on */
};
Programme2:
class StructWrapper{
private:
auto_ptr<Structx> m_SMPTRx;
public:
StructWrapper():m_SMPTRAx(new Structx){}
public:
void Soperator1(){ /* 针对Structx对象的特性操作 */}
void Soperator2(){ /* 针对Structx对象的特性操作 */}
/* and so on */
};
Programme3:
StructWrapper::StructWrapper(const StructWrapper& other)
: M_SMPTRx(new Struct(*other.m_SMPTRx)) { }
StructWrapper& StructWrapper::operator=(const StructWrapper &other){
*m_SMPTRx = *other.m_SMPTRx;
};
处于对构建于堆中的对象(new Structx)智能维护的需要.
我们将programme1改造为programme2:
不错,对象是可以智能维护了.
对于包裹类(StructWrapper)你是否会有这样的构造或指派操作:
StructWrapper m_SMPTRWrapper2(m_SMPTRWrapper1);
StructWrapper mSMPTRWrapper2 = m_SMPTRWrapper1;
那么请注意:
当你坦然的来一个:M_SMPTRWrapper1->Soperator1();的时候,
系统崩溃了.
不必惊讶,所有权还是所有权问题.
问一下自己:当programme2默认拷贝构造函数作用时,又调用了auto_ptr的
默认构造函数,那么auto_ptr所有的默认行为都遵循独权策略.对,就这样.
m_SMPTRWrapper1的对象所有权转移给了m_SMPTRWrapper2.
M_SMPTRWrapper1->Soperator1();那么操作变成了在NULL上的.
哦!系统不崩溃才怪.
那么你需要想,programme3那样利用auto_ptr的提领操作符自己的
构造"完全对象".
b.利用const关键字,防止不经意的权限转移
从上面的叙述,你可看出,所有权转移到处可以酿成大祸.
而对于一般应用来说,独权又是很好的安全性策略.
那么我们就用const来修饰auto_ptr,禁止不经意的错误.
当然上面提及:并不代表auto_ptr是不可修改的.
处于需要,从两种const语义,你都可实现修改.
然,你还希望在函数传入传出auto_ptr那么你可传递auto_ptr的引用,
那就万无一失了: void fook(const auto_ptr<x>& m_PARAMin);
在返回后赋予其它时,使用引用是不行的.你得用指针.
因为引用无论作为lvalue还是rvaluev,都会调用构造或指派函数.
4.你是否觉得std::auto_ptr还不够完美
在实践中,std::auto_ptr能满足你的需求吗?
Andrei Alexandrescu在一篇文章中,提及:有关Smart Pointer的技术就像
巫术.Smart Pointer作为C++垃圾回收机制的核心,它必须足够强大的、具有工业强度和安全性.
但为了可一劳永逸我们还需要披荆斩棘继续探索.
下面在需求层面上,我们思索一下我们的智能指针还需要些什么?
a. std::auto_ptr 能够处理数组吗?我们可以用智能指针来管理其它的资源吗?
譬如一个线程句柄、一个文件句柄 and so on !
b. 对于我们的对象真的永远实行独权政策吗?
c. Our 智能指针还需要在继承和虚拟层面上发挥威力 !
d. 往往,需要扩展Our 智能指针的功能成员函数来满足动态的需要 !
e. 也许,你需要的还很多.
---------------------------------------------------------------
原文地址:http://dev.csdn.net/develop/article/17/17530.shtm
一、剖析C++标准库智能指针(std::auto_ptr)
1.Do you Smart Pointer?
2.std::auto_ptr的设计原理
3.std::auto_ptr高级使用指南
4.你是否觉得std::auto_ptr还不够完美?
二、C++条件,寻找构造更强大的智能指针(Smart Pointer)的策略
1.支持引用记数的多种设计策略
2.支持处理多种资源
3.支持Subclassing
4.支持多线程条件下,线程安全的多种设计策略
5.其它多种特殊要求下,再构造
三、Generic Programming基础技术和Smart Pointer
1.回首处理资源中的Traits技术
2.回首多线程支持的设计
四、COM实现中,Smart Pointer设计原理
五、著名C++库(标准和非标准)中的Smart Pointer现状
---------------------------------------------------------------------
一、剖析C++标准库智能指针(std::auto_ptr)
1.Do you Smart Pointer?
Smart Pointer,中文名:智能指针, 舶来品?
不可否认,资源泄露(resource leak)曾经是C++程序的一大噩梦.垃圾回收
机制(Garbage Collection)一时颇受注目.然而垃圾自动回收机制并不能
满足内存管理的即时性和可视性,往往使高傲的程序设计者感到不自在.
况且,C++实现没有引入这种机制.在探索中,C++程序员创造了锋利的
"Smart Pointer".一定程度上,解决了资源泄露问题.
也许,经常的,你会写这样的代码:
//x拟为class:
// class x{
// public:
// int m_Idata;
// public:
// x(int m_PARAMin):m_Idata(m_PARAMin){}
// void print(){ cout<<m_Idata<<endl; }
// .....
// }
//
void fook(){
x* m_PTRx = new A(m_PARAMin);
m_PTRx->DoSomething(); //#2
delete m_PTRx;
}
是的,这里可能没什么问题.可在复杂、N行、m_PTRclassobj所指对象生命周
期要求较长的情况下,你能保证你不会忘记delete m_PTRclassobj吗?生活中,
我们往往不应该有太多的口头保证,我们需要做些真正有用的东西.还有一个
更敏感的问题:异常.假如在#2方法执行期异常发生,函数执行终止,那么new
出的对象就会泄露.于是,你可能会说:那么就捕获异常来保证安全性好了.
你写这样的程式:
void fook(){
A* m_PTRx = new A(m_PARAMin);
try{
m_PTRx->DoSomething();
}
catch(..){
delete m_PTRx;
throw;
}
delete m_PTRx;
}
哦!天哪!想象一下,你的系统,是否会象专为捕获异常而设计的.
一天,有人给你建议:"用Smart Pointer,那很安全.".你可以这样重写你的程序:
void fook(){
auto_ptr<x> m_SMPTRx(new x(m_PARAMin));
m_SMPTRx->DoSomething();
}
OK!你不太相信.不用delete吗?
是的.不用整天提心吊胆的问自己:"我全部delete了吗?",而且比你的delete
策略更安全.
然后,还有人告诉你,可以这样用呢:
ok1.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
auto_ptr<x> m_SMPTR2(m_SMPTR1); //#2
May be you can code #2 like this :
auto_ptr<x> m_SMPTR2;
m_SMPTR2 = m_SMPTR1;
ok2.
auto_ptr<int> m_SMPTR1(new int(32));
ok3.
auto_ptr<int> m_SMPTR1;
m_SMPTR1 = auto_ptr<int>(new int(100));
也可以:
auto_ptr<int> m_SMPTR1(auto_ptr<int>(new int(100)));
ok4.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
m_SMPTR1.reset(new x(m_PARAMin1));
ok5.
auto_ptr<x> m_SMPTR1(new x(m_PARAMin));
auto_ptr<x> m_SMPTR2(m_SMPTR.release());
cout<<(*m_SMPTR2).m_Idata<<endl;
ok6.
auto_ptr<int> fook(){
return auto<int>(new int(100));
}
ok7.............and so on
但不可这样用:
no1.
char* chrarray = new char[100];
strcpy(chrarray,"I am programming.");
auto_ptr<char*> m_SMPTRchrptr(chrarray);
//auto_ptr并不可帮你管理数组资源
no2.
vector<auto_ptr<x>> m_VECsmptr;
m_VECsmptr.push_back(auto_ptr<int>(new int(100)));
//auto_ptr并不适合STL内容.
no3.
const auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR(new x(200));
no4.
x m_OBJx(300);
auto_ptr<x> m_SMPTR(&m_OBJx);
no5
x* m_PTR = new x(100);
auto_ptr<x> m_SMPTR = m_pTR;
no6..........and so on
预先提及所有权的问题,以便下面带着疑问剖析代码?
power1.
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
power2.
auto_ptr<x> m_SMPTR(new x(100));
auto_ptr<x> returnfun(auto_ptr<x> m_SMPTRin){
return m_SMPTRin;
}
auto_ptr<x> = returnfun(m_SMPTR); //#5
//在上面的#5中,我要告诉你对象所有权转移了两次.
//什么叫对象所有权呢?
2. std::auto_ptr的设计原理
上面的一片正确用法,它们在干些什么?
一片非法,它们犯了什么罪?
一片什么所有权转移,它的内部机智是什么?
哦!一头雾水?下面我们就来剖析其实现机制.
基础知识:
a.智能指针的关键技术:在于构造栈上对象的生命期控制
堆上构造的对象的生命期.因为在智能指针的内部,存储
着堆对象的指针,而且在构析函数中调用delete行为.
大致机构如下:
x* m_PTRx = new x(100);//#1
template<typename T>
auto_ptr{
private:
T* m_PTR;//维护指向堆对象的指针,在auto_ptr定位后
.... //它应该指向#1构造的对象,即拥有所有权.
~auto(){ delete m_PTR; }
....
}
b.所有权转移之说
上面曾有一非法的程式片段如下:
auto_ptr<x> m_SMPTR1(new x(100));
auto_ptr<x> m_SMPTR2 = m_SMPTR1;
m_SMPTR2->print();
//输出:100.
m_SMPTR1->print();
//!! 非法的.
按常理来说,m_SMPTR->print();怎么是非法的呢?
那是因为本来,m_SMPTR1维护指向new x(100)的指针,
可是m_SMPTR2 = m_SMPTR1;auto_ptr内部机制使得m_SMPTR1将对象的地址
传给m_SMPTR2,而将自己的对象指针置为0.
那么自然m_SMPTR->print();失败.
这里程序设计者要负明显的职责的.
那么auto_ptr为什么采取这样的策略:保证所有权的单一性.
亦保证了系统安全性.
如果多个有全权的auto_ptr维护一个对象,那么在你消除一个
auto_ptr时,将导致多个auto_ptr的潜在危险.
下面我们以SGI-STL的auto_ptr设计为样本(去掉了无关分析的宏),来剖析其原理.
#1 template <class _Tp> class auto_ptr {
#2 private:
#3 _Tp* _M_ptr; //定义将维护堆对象的指针
#4 public:
#5 typedef _Tp element_type; //相关类型定义
#6 explicit auto_ptr(_Tp* __p = 0) __STL_NOTHROW : _M_ptr(__p) {}
#7 auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) {}
#8 template <class _Tp1> auto_ptr(auto_ptr<_Tp1>& __a) __STL_NOTHROW
: _M_ptr(__a.release()) {}
//#6、#7、#8是auto_ptr构造函数的三个版本.
//#6注释:传入对象的指针,构造auto_ptr.explicit关键字:禁止隐式转换.
// 这就是ok2正确,而no5(隐式转换)错误的原因.
//#7注释:拷贝构造函数.
// 传入auto_ptr实例,构造auto_ptr. ok1、ok3使用了这个构造式.
// 它是一个很关键的构造函数,在具体情况下,我们再分析
//#8注释:auto_ptr的模板成员,可在继承对象重载的基础上,实现特殊功能.
//
// 举例:
// class A{ public:
// virtual void fook(){cout<<"I am programming"<<endl;
// /*..........*/ };
// class B : public A {
// virtual void fook(){ cout<<"I am working"<<endl;
// /*...........*/ };
// auto_ptr<A> m_SMPTRa(new A(33));//实质:
// auto_ptr<B> m_SMPTRb(m_SMPTRa); //基类的指针可以赋给派生类的指针
//
// auto_ptr<B> m_SMPTRb(new B(44));//实质:
// auto_ptr<A> m_SMPTRa(m_SMPTRb); //派生类的指针不可赋给基类的指针
//
// auto_ptr<A> m_SMPTRa(new B(33)); // ok!
// m_SMPTRa->fook()将调用派生类B的fook()
// m_SMPTRa->A::fook()将调用基类A的fook()
//
// auto_ptr<B> m_SMPTRb(new A(33)); // wrong!
//
//
#9 auto_ptr& operator=(auto_ptr& __a) __STL_NOTHROW {
#10 if (&__a != this) { delete _M_ptr; _M_ptr = __a.release(); }
#11 return *this;
#12 }
#13 template <class _Tp1>
#14 auto_ptr& operator=(auto_ptr<_Tp1>& __a) __STL_NOTHROW {
#15 if (__a.get() != this->get()) { delete _M_ptr; _M_ptr = __a.release(); }
#16 return *this;
#16 }
//
// #9~~#16 两个版本的指派函数.
// delete _M_ptr; 在指派前,销毁原维护的对象.
// _a.release() ; release操作,详细代码参见#20~~#23.
// 用于*this获得被指派对象,
// 且将原维护auto_ptr置空.
// no3使用了第一种指派.
// 而权限转移正是_a.release()的结果.
#17 ~auto_ptr() __STL_NOTHROW { delete _M_ptr; }
//构析函数.消除对象.注意这里对对象的要求!
#17 _Tp& operator*() const __STL_NOTHROW { return *_M_ptr; }
#18 _Tp* operator->() const __STL_NOTHROW { return _M_ptr; }
#19 _Tp* get() const __STL_NOTHROW { return _M_ptr; }
//
// 操作符重载.
// #17注释:提领操作(dereference),获得对象. 见ok5用法.
// #18注释:成员运算符重载,返回对象指针.
// #19注释:普通成员函数.作用同于重载->运算符
//
#20 _Tp* release() __STL_NOTHROW {
#21 _Tp* __tmp = _M_ptr;
#22 _M_ptr = 0;
#23 return __tmp; }
//上面已经详解
#24 void reset(_Tp* __p = 0) __STL_NOTHROW {
#25 delete _M_ptr;
#26 _M_ptr = __p; }
//
//传入对象指针,改变auto_ptr维护的对象
// 且迫使auto_ptr消除原来维护的对象
// 见ok3用法.
// According to the C++ standard, these conversions are required. Most
// present-day compilers, however, do not enforce that requirement---and,
// in fact, most present-day compilers do not support the language
// features that these conversions rely on.
//下面这片段用于类型转化,目前没有任何编译器支持
//具体技术细节不诉.
#ifdef __SGI_STL_USE_AUTO_PTR_CONVERSIONS
#27 private:
#28 template<class _Tp1>
#29 struct auto_ptr_ref { _Tp1* _M_ptr; auto_ptr_ref(_Tp1* __p) : _M_ptr(__p) {}
};
#30 public:
#31 auto_ptr(auto_ptr_ref<_Tp> __ref) __STL_NOTHROW
: _M_ptr(__ref._M_ptr) {}
#32 template <class _Tp1>
#33 operator auto_ptr_ref<_Tp1>() __STL_NOTHROW
#34 { return auto_ptr_ref<_Tp>(this->release()); }
#35 template <class _Tp1> operator auto_ptr<_Tp1>() __STL_NOTHROW
#36 { return auto_ptr<_Tp1>(this->release()); }
#37 #endif /* __SGI_STL_USE_AUTO_PTR_CONVERSIONS */
#38 };
OK!就是这样了.
正如上面原理介绍处叙说,
你需要正视两大特性:
1.构造栈对象的生命期控制堆上构造的对象的生命期
2.通过release来保证auto_ptr对对象的独权.
在我们对源码分析的基础上,重点看看:
no系列错误在何处?
no1.
我们看到构析函数template<class _Tp>
~auto_ptr() _STL_NOTHROW
{ delete _M_ptr; }
所以它不能维护数组,
维护数组需要操作:delete[] _M_ptr;
no2.
先提部分vector和auto_ptr代码:
a.提auto_ptr代码
auto_ptr(auto_ptr& __a) __STL_NOTHROW : _M_ptr(__a.release()) {}
b.提vector代码
Part1:
void push_back(const _Tp& __x) {
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
Part2:
template <class _T1, class _T2>
inline void construct(_T1* __p,
//++++++++++++++++++++++++++++++++
// const _T2& __value) { +
//++++++++++++++++++++++++++++++++
// new (__p) _T1(__value); +
//++++++++++++++++++++++++++++++++
}
Part3.
template <class _Tp, class _Alloc>
void
vector<_Tp, _Alloc>::_M_insert_aux
(iterator __position,
//++++++++++++++++++++++++++++++++
// const _Tp& __x) ++
//++++++++++++++++++++++++++++++++
{
if (_M_finish != _M_end_of_storage) {
construct(_M_finish, *(_M_finish - 1));
++_M_finish;
//++++++++++++++++++++++++++++++++
// _Tp __x_copy = __x; +
//++++++++++++++++++++++++++++++++
copy_backward(__position, _M_finish - 2, _M_finish - 1);
*__position = __x_copy;
}
else {
const size_type __old_size = size();
const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
iterator __new_start = _M_allocate(__len);
iterator __new_finish = __new_start;
__STL_TRY {
__new_finish = uninitialized_copy
(_M_start, __position, __new_start);
construct(__new_finish, __x);
++__new_finish;
__new_finish = uninitialized_copy
(__position, _M_finish, __new_finish);
}
__STL_UNWIND((destroy(__new_start,__new_finish),
_M_deallocate(__new_start,__len)));
destroy(begin(), end());
_M_deallocate(_M_start, _M_end_of_storage - _M_start);
_M_start = __new_start;
_M_finish = __new_finish;
_M_end_of_storage = __new_start + __len;
}
}
从提取的vector代码,Part1可看出,push_back的操作行为.
兵分两路,可是再向下看,你会发现,无一例外,都
通过const _Tp& 进行拷贝行为,那么从auto_ptr提出的片段就
派上用场了.
可你知道的,auto_ptr总是坚持对对象的独权.那必须修改
原来维护的对象,而vector行为要求const _Tp&,这样自然会产生
问题.一般编译器是可以发觉这种错误的.
其实,STL所有的容器类都采用const _Tp&策略.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 看了sutter和Josuttis的两篇文章中,都提及: +
+ STL容器不支持auto_ptr原因在于copy的对象只是获得所有权的对象, +
+ 这种对象不符合STL的要求.可是本人总感觉即时不是真正的复制对象,+
+ 但我用vector<auto_ptr<x> >的目的就在于维护对象,并不在乎 +
+ 所谓的完全对象.而且我用自己写的Smart Pointer配合STL容器工作, +
+ 很正常.那需要注意的仅仅是const问题. +
+ +
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
no3.
这个也是auto_ptr隐含的所有权问题引起的.
const auto_ptr不允许修改.
随便提及:const对象不代表对象一点不可以改变.
在两种const语义下,都有方法修改对象或对象内部指针维护的对象
或其它资源.
no4.
再看auto_ptr的构析函数.
delete不可以消除栈上资源.
no5.
依赖传入对象指针的构造函数被声明为explicit,禁止隐式转换.
3.auto_ptr高级使用指南
a.类成员auto_ptr,禁止构造函数以构建"完全对象"
Programme1:
struct Structx{
int m_Idata;
char m_CHRdata;
/* and so on */
};
出于对象编程的理念,
我们将Structx打造成包裹类:
class StructWrapper{
private:
Structx* m_STRTxptr;
public:
StructWrapper():m_STRTxptr(new Structx){}
~StructWrapper(){delete m_SMRTxptr; }
public:
void Soperator1(){ /* 针对Structx对象的特性操作 */}
void Soperator2(){ /* 针对Structx对象的特性操作 */}
/* and so on */
};
Programme2:
class StructWrapper{
private:
auto_ptr<Structx> m_SMPTRx;
public:
StructWrapper():m_SMPTRAx(new Structx){}
public:
void Soperator1(){ /* 针对Structx对象的特性操作 */}
void Soperator2(){ /* 针对Structx对象的特性操作 */}
/* and so on */
};
Programme3:
StructWrapper::StructWrapper(const StructWrapper& other)
: M_SMPTRx(new Struct(*other.m_SMPTRx)) { }
StructWrapper& StructWrapper::operator=(const StructWrapper &other){
*m_SMPTRx = *other.m_SMPTRx;
};
处于对构建于堆中的对象(new Structx)智能维护的需要.
我们将programme1改造为programme2:
不错,对象是可以智能维护了.
对于包裹类(StructWrapper)你是否会有这样的构造或指派操作:
StructWrapper m_SMPTRWrapper2(m_SMPTRWrapper1);
StructWrapper mSMPTRWrapper2 = m_SMPTRWrapper1;
那么请注意:
当你坦然的来一个:M_SMPTRWrapper1->Soperator1();的时候,
系统崩溃了.
不必惊讶,所有权还是所有权问题.
问一下自己:当programme2默认拷贝构造函数作用时,又调用了auto_ptr的
默认构造函数,那么auto_ptr所有的默认行为都遵循独权策略.对,就这样.
m_SMPTRWrapper1的对象所有权转移给了m_SMPTRWrapper2.
M_SMPTRWrapper1->Soperator1();那么操作变成了在NULL上的.
哦!系统不崩溃才怪.
那么你需要想,programme3那样利用auto_ptr的提领操作符自己的
构造"完全对象".
b.利用const关键字,防止不经意的权限转移
从上面的叙述,你可看出,所有权转移到处可以酿成大祸.
而对于一般应用来说,独权又是很好的安全性策略.
那么我们就用const来修饰auto_ptr,禁止不经意的错误.
当然上面提及:并不代表auto_ptr是不可修改的.
处于需要,从两种const语义,你都可实现修改.
然,你还希望在函数传入传出auto_ptr那么你可传递auto_ptr的引用,
那就万无一失了: void fook(const auto_ptr<x>& m_PARAMin);
在返回后赋予其它时,使用引用是不行的.你得用指针.
因为引用无论作为lvalue还是rvaluev,都会调用构造或指派函数.
4.你是否觉得std::auto_ptr还不够完美
在实践中,std::auto_ptr能满足你的需求吗?
Andrei Alexandrescu在一篇文章中,提及:有关Smart Pointer的技术就像
巫术.Smart Pointer作为C++垃圾回收机制的核心,它必须足够强大的、具有工业强度和安全性.
但为了可一劳永逸我们还需要披荆斩棘继续探索.
下面在需求层面上,我们思索一下我们的智能指针还需要些什么?
a. std::auto_ptr 能够处理数组吗?我们可以用智能指针来管理其它的资源吗?
譬如一个线程句柄、一个文件句柄 and so on !
b. 对于我们的对象真的永远实行独权政策吗?
c. Our 智能指针还需要在继承和虚拟层面上发挥威力 !
d. 往往,需要扩展Our 智能指针的功能成员函数来满足动态的需要 !
e. 也许,你需要的还很多.
---------------------------------------------------------------
原文地址:http://dev.csdn.net/develop/article/17/17530.shtm
发表评论
-
错误的结果 2 (从“C:\Program Files\Microsoft Visual Studio 8\VC\bin\cl.exe
2010-05-31 17:59 2151一般是项目的配置出问题了,可以禁用优化试试。 -
C++“读取位置 0x****** 时发生访问冲突”的可能原因
2010-05-31 16:41 18974这种错误的意思一般是指访问了不属于自己的内存空间,出现这种错误 ... -
/MD、MDd 和 /MT、MTd
2010-05-31 14:42 3220这里总结下他们的区别 后面的那个'd'是代表DEBUG版 ... -
如何解决“Invalid Address specified to RtlValidateHeap”错误?
2010-05-31 14:00 4824一个可能的原因:在不同模块(工程)之间传递 ... -
设置C++类库输出类型(DLL or LIB)
2010-05-26 17:00 2558打开工程属性,然后选择“配置属性 --> 常规 --&g ... -
C++如何获取系统进程列表
2010-05-20 16:33 4270PROCESSENTRY32 pe32; // 在使 ... -
【转】OpenCV中IplImage 与 Gdiplus 中Bitmap之间的相互转换
2010-05-19 15:05 4229// pIplImage 需要外部释放 Mosesyua ... -
如何在Visual Studio环境中创建和调用类库(DLL+LIB) + 关于LibSVM的使用
2010-05-09 18:23 8341好久没有使用C++做开发,所以对C++的开发环境( ... -
关于构造函数初始化列表顺序的面试题
2009-06-01 22:46 1549#include <iostream> #i ... -
编写类String的构造函数、析构函数和赋值函数
2009-06-01 22:22 5226这个在面试或笔试的时候常问到或考到。 已知类String的原 ... -
Windows下的Boost库的使用
2009-05-31 17:03 2825我采用的是VC8.0和boost_1_35_0。自己重新编译b ... -
string与char*
2009-05-31 16:50 22431、C++ 里有字符串类型string ,最大可支持1G,可用 ... -
C++语言中数组指针和指针数组彻底分析(系列一)
2009-05-31 16:39 1669近来在论坛中机场经常看到有关数组指针和指针数组的讨论。这个是学 ... -
下面的程序会在哪一行崩溃---指针安全问题
2009-05-31 14:47 1780struct S { int i; int* p ... -
“缓冲区溢出”错误
2009-05-31 13:56 1174试图对不存在的元素进行下标操作是程序设计过程中经常犯的严重错误 ... -
一道关于C++继承的面试题
2009-05-31 13:51 1521#include <iostream> ... -
结构体的大小计算
2009-05-30 18:04 1361示例程序: #include <stdio.h> ... -
指针的大小--sizeof问题
2009-05-30 16:57 12239指针的大小是问:一个指针变量占用多少内存空间? 分析:既然指 ... -
深入理解C++中的mutable关键字
2009-05-30 16:05 1469mutalbe的中文意思是“可变的,易变的”,跟constan ... -
C和C++的特点
2009-05-30 01:25 2675推荐C和C++一直是程序设计语言的主流之一,因为C和C++既具 ...
相关推荐
文档中提到的 `SmartPointer` 类似于 C++ 标准库中的 `std::shared_ptr` 和 `std::unique_ptr`。 ### 二、智能指针的设计与实现 文档中提供了一个简单的智能指针类 `SmartPtr` 的实现,该类使用模板实现,可以处理...
### C++中智能指针的设计和使用 #### 智能指针概述 在C++中,智能指针是一类特殊的设计模式,旨在通过模仿原始指针的行为来提供额外的安全性和资源管理机制。它们通常用来解决传统指针所带来的内存泄漏问题和其他...
《深入理解Boost智能指针:以“SmartPointer.zip”为例》 在C++编程中,智能指针是一种管理动态分配内存的对象,它能够自动释放所指向的对象,从而避免内存泄漏问题。Boost库,作为C++标准库的重要补充,提供了多种...
本篇文章收集了近一年来所有关于智能指针的面试相关内容。以智能指针的面试题线索,穿插讲解完最常用的四种智能指针的各个方面。本文讲解4个智能指针的基本概念和特性,以及其他设计到的知识点。讲解的过程中,如果...
智能指针介绍SmartPointer 是 C++ 项目,其目的是确保在初始化对象的同时进行资源获取,从而在一行代码中创建并准备好对象的所有资源。 一般来说,主要目标是将任何堆分配的资源(例如动态分配的内存或系统对象句柄...
智能指针C ++中的SmartPointer实现。 SmartPointer是一种通过模板实现的数据类型,它可以模拟指针,同时还提供自动垃圾回收。 它会自动计算对SmartPointer对象的引用数,并在引用计数达到零时释放类型T的对象。 ...
Why Smart Pointer? 为什么需要智能指针?因为c++的内存管理一直是个令人头疼的问题。 假如我们有如下person对象:每个person有自己的名字,并且可以告诉大家他叫什么名字 ...
C++ 7种智能指针测试代码
智能指针是C++编程中一个非常重要的工具,它在管理动态分配的内存时提供了自动释放的功能,大大降低了内存泄漏的风险。然而,如果不正确地使用智能指针,反而可能导致一些严重的问题,例如悬挂指针、内存泄漏或者...
STL 中的智能指针 智能指针是一种特殊的指针,它可以自动管理内存,避免手动 delete 导致的内存泄露问题。在 STL 中,有多种智能指针,每种都有其特点和用途。本文将详细介绍 STL 中的智能指针,包括 std::auto_ptr...
"c++句柄、智能指针和指针的区别" 在C++编程中,句柄、智能指针和指针是三个相关但不同的概念。理解它们之间的区别对于初学者来说非常重要。 首先,让我们来讨论指针和句柄的区别。指针是指向物理内存地址的指针...
智能指针是C++编程中一个非常重要的概念,它是一种自动管理内存的对象,用来封装原始指针,确保在适当的时候释放所指向的对象。在C++中,智能指针的主要作用是防止内存泄漏,通过自动地跟踪和管理对象的生命周期来...
智能指针是C++编程中一个非常重要的概念,它是一种对象,封装了原始指针,并在需要时自动管理所指向的对象的生命周期。智能指针的主要目的是解决C++中的内存管理和资源管理问题,防止因手动释放内存导致的内存泄漏...
智能指针是C++编程中一个非常重要的概念,它是一种对象,可以自动管理其所指向的动态内存资源。在C++中,智能指针通过实现RAII(Resource Acquisition Is Initialization)原则,来确保内存的自动释放,从而避免了...
C++智能指针的创建 C++中的指针是很麻烦的,难以管理和释放内存。为了减少问题的出现,现在有很多技巧去减少问题的出现。智能指针是其中一种解决方案。 智能指针是一种特殊的类,它可以模拟指针的行为,但同时也...
extend to_string to support smart pointer and stl container which stored smart pointer.
智能指针是C++编程中一个非常重要的概念,它是一种对象,可以自动管理动态分配的内存。...在文件"pointer"中,可能包含有关计数指针的具体实现代码或练习,这对于理解智能指针的工作机制和实践应用是非常有价值的。