`
king_tt
  • 浏览: 2258841 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

Linux多任务编程(一)---任务、进程、线程

阅读更多

Linux下多任务介绍

首先,先简单的介绍一下什么叫多任务系统?任务、进程、线程分别是什么?它们之间的区别是什么?,从而可以宏观的了解一下这三者,然后再针对每一个仔细的讲解。

什么叫多任务系统?多任务系统指可以同一时间内运行多个应用程序,每个应用程序被称作一个任务

任务定义:任务是一个逻辑概念,指由一个软件完成的任务,或者是一系列共同达到某一目的的操作。

进程定义:进程是指一个具有独立功能的程序在某个数据集上的一次动态执行过程,它是系统进行资源分配和调度的最小单元。

线程定义:线程是进程内独立的一条运行路线,是处理器调度的最小单元,也可以成为轻量级进程。

看了定义,有点晕,还是通俗的说一下它们的区别吧。①通常一个任务是一个程序的一次执行,一个任务包含一个或多个完成独立功能的子任务,这个独立的子任务就是进程或线程。②一个进程可以拥有多个线程,每个线程必须有一个父进程。

任务

任务是一个逻辑概念,指由一个软件完成的任务,或者是一系列共同达到某一目的的操作。通常一个任务是一个程序的一次执行,一个任务包含一个或多个完成独立功能的子任务,这个独立的子任务就是进程或线程。例如,一个杀毒软件的一次运行是一个任务,目的是从各种病毒的侵害中保护计算机系统,这个任务包含多个独立功能的子任务(进程或线程),包括实时监控功能、定时查杀功能、防火墙功能及用户交互功能等。任务、进程和线程之间的关系如图1所示

进程

进程的基本概念

进程是指一个具有独立功能的程序在某个数据集上的一次动态执行过程,它是系统进行资源分配和调度的基本单元。一次任务的运行可以并发激活多个进程,这些进程相互合作来完成该任务的一个最终目标。

进程具有并发性、动态性、交互性、独立性和异步性等主要特性。

进程和程序是有本质区别的:程序是静态的一段代码,是一些保存在非易失性存储器的指令的有序集合,没有任何执行的概念;而进程是一个动态的概念,它是程序执行的过程,包括动态创建、调度和消亡的整个过程,它是程序执行和资源管理的最小单位。

Linux下的进程结构

进程不但包括程序的指令和数据,而且包括程序计数器和处理器的所有寄存器及存储临时数据的进程堆栈,因此,正在执行的进程包括处理器当前的一切活动。

因为linux是一个多任务多进程的操作系统,所以其他的进程必须等到系统将处理器使用权分配给自己之后才能运行。当正在运行的进程等待其他的系统资源时,linux内核将取得处理器的控制权,并将处理器分配给其他正在等待的进程,他按照内核中的调度算法决定将处理器分配给哪一个进程,也就是说,内核不会让处理器闲着。

内核将所有进程存放在双向循环链表(进程链表)中,其中链表的头是 init_task 描述符。链表的每一项都是类型为 task_struct,称为进程描述符的结构,该结构包含了一个进程相关的所有信息,定义在<include/linux/sched.h>文件中。task_struct内核结构比较大,它能完整的描述一个进程,如进程的状态、进程的基本信息、进程标识符、内存相关信息、父进程相关信息、与进程相关的终端信息、当前工作目录、打开的文件信息、所接收的信号信息等。

下面详细讲解task_struct结构中最为重要的两个域:state(进程状态)和pid(进程标识符)。如果想具体了解task_struct,请点这里。

(1)进程状态

Linux中的进程有以下几种状态。

● 运行状态(TASK_RUNNING):进程当前正在运行,或者正在运行队列中等待调度。

● 可中断的阻塞状态(TASK_INTERRUPTIBLE):进程处于阻塞(睡眠)状态,正在等待某些事件发生或能够占用某些资源。处在这种状态下的进程可以被信号中断。接收到信号或被显式的唤醒呼叫(如调用 wake_up 系列宏:wake_up、wake_up_interruptible等)唤醒之后,进程将转变为 TASK_RUNNING 状态。

● 不可中断的阻塞状态(TASK_UNINTERRUPTIBLE):此进程状态类似于可中断的阻塞状态(TASK_INTERRUPTIBLE),只是它不会处理信号,把信号传递到这种状态下的进程不能改变它的状态。在一些特定的情况下(进程必须等待,直到某些不能被中断的事件发生),这种状态是很有用的。只有在它所等待的事件发生时,进程才被显示的唤醒呼叫唤醒。

● 可终止的阻塞状态(TASK_KILLABLE):该状态的运行机制类似于TASK_UNINTERRUPTIBLE,只不过处在该状态下的进程可以响应致命信号。它可以替代有效但可能无法终止的不可中断的阻塞状态(TASK_UNINTERRUPTIBLE),以及易于唤醒但安全性欠佳的可中断的阻塞状态TASK_INTERRUPTIBLE)。

● 暂停状态(TASK_STOPPED):进程的执行被暂停,当进程收到 SIGSTOP、SIGSTP、SIGTTIN、SIGTTOU等信号时,就会进入暂停状态。

● 跟踪状态(TASK_TRACED):进程的执行被调试器暂停。当一个进程被另一个监控时(如调试器使用ptrace()系统调用监控测试程序),任何信号都可以把这个进程置于跟踪状态。

● 僵尸状态(EXIT_ZOMBIE):进程运行结束,父进程尚未使用 wait 函数族(如调用 waitpid()函数)等系统调用来“收尸”,即等待父进程销毁它。处在该状态下的进程“尸体”已经放弃了几乎所有的内存空间,没有任何可执行代码,也不能被调度,仅仅在进程列表中保留一个位置,记载该进程的推出状态等信息供其他进程收集。

● 僵尸撤销状态(EXIT_DEAD):这是最终状态,父进程调用 wait 函数族“收尸”后,进程彻底由系统删除。

它们之间的转换关系如图2所示:

进程可以使用 set_task_state 和 set_current_state 宏来改变指定进程的状态信息和当前进程的状态。

(2)进程标识符

Linux内核通过唯一的进程标识符 PID 来标识每个进程(就和文件描述符一样)。PID存放在进程描述符的 pid 字段中,新创建的 PID 通常是前一个进程的 PID 加1,不过PID的值有上限(最大值=PID_MAX_DEFAULT-1,通常为32767),读者可以查看/proc/sys/kernel/pid_max 来确定该系统的进程数上限。

当系统启动后,内核通常作为某一个进程的代表。一个指向task_struct的宏current用来记录正在运行的进程。current经常作为进程描述符结构指针的形式出现在内核代码中,例如,current->pid 表示处理器正在执行的进程的PID。当系统需要查看所有的进程时,则调用for_each_process()宏,这将比系统搜索数组的速度要快的多。

在Linux中获得当前进程号的(PID)和父进程号(PPID)的系统调用函数分别为 getpid() 和 getppid()。

进程的创建、执行、终止

(1)进程的创建和执行

咱们首先得知道啥是创建,啥是执行哈!我刚开始看的时候没懂。创建进程就是产生一个新的进程,这个大家都知道。而进程的执行,前边讲进程的的定义的时候,就说了正在运行的子任务,说白了,进程执行也就是让产生的这个进程干点什么事,别占着那啥不拉那啥。

许多操作系统提供的都是产生进程的机制,也就是说,首先在新的地址空间里创建进程、读入可执行文件,最后再开始执行。Linux 中进程的创建很特别,它把上述的步骤分解到两个单独的函数中去执行:fork()函数和exec函数族。首先,fork()函数通过复制当前进程创建一个子进程(注意此时资源还没有被复制过来,去了解一下写时复制页技术吧),子进程于父进程的区别仅仅在于不同的PID、PPID和某些资源及统计量。exec函数族负责读取可执行文件并将其载入地址空间开始运行。

(2)进程的终止

进程终结也需要很多繁琐的工作,系统必须保证回收进程所占用的资源,并通知父进程。Linux首先把终止的进程设置为僵尸状态,这时,进程无法投入运行,它的存在只为父进程提供信息,申请死亡。父进程得到信息后,开始调用 wait 函数族,最后终止子进程,子进程占用的所有资源被全部释放。

进程的内存结构

Linux操作系统采用虚拟内存管理技术,使得每个进程都有各自互不干涉的进程地址空间。该地址空间是大小为 4GB的线性虚拟空间,用户所看到和接触到的都是该虚拟地址,无法看到实际的物理内存地址。利用这种虚拟地址不但能起到保护操作系统的效果(用户不能直接访问物理地址),而且,更重要的是,用户程序可以使用比实际物理内存更大的地址空间。

4GB的进程地址空间会被分成两个部分:用户空间与内核空间。用户地址空间是从0到3GB(0xC000 0000),内核地址空间占据3GB到4GB。用户进程通常情况下只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。只有用户进程使用系统调用(代表用户进程在内核态执行)时可以访问到内核空间。每当进程切换时,用户空间就跟着变化;而内核空间由内核负责映射,它不会跟着进程改变,是固定的。内核空间地址有自己对应的页表,用户进程各自有不同的页表。每个进程的用户空间都是完全独立、互不相干的。进程的虚拟内存空间如图3所示,其中用户空间包括以下几个功能区域:

● 只读段: 包含程序代码(.init和.text)和只读数据(.rodata)。

● 数据段: 存放的是全局变量和静态变量。其中可读可写数据段(.data)存放已初始化的全局变量和静态变量,BSS数据段(.bss)存放未初始化的全局变量和静态变量。

● 堆: 由系统自动分配释放,存放函数的参数值、局部变量的值、返回地址等。

● 堆栈: 存放动态分配的数据,一般由程序员动态分配和释放。若程序员不释放,程序结束时可能由操作系统回收。

● 共享库的内存映射区域: 这是Linux动态链接器和其他共享代码库代码的映射区域。

 

由于在Linux系统中每一个进程都会有/proc文件系统下与之对应的一个目录(如将init进程的相关信息在/proc/1 目录下的文件中描述),因此通过 proc 文件系统可以查看某个进程的地址空间的映射情况。例如,运行一个应用程序,如果它的进程号为13703,则输入“ cat /proc/13703/maps”命令,可以查看该进程的内存映射情况。

线程

前面已经讲到,进程是系统中程序执行和资源分配的基本单位。每个进程都拥有自己的数据段、代码段和堆栈段,这就造成了进程在进行切换等动作时需要较复杂的上下文切换等动作。为了进一步减少处理机的空闲时间,支持多处理器及减少上下文切换开销,进程在演化中出现了另一个概念---线程。它是进程内独立的一条运行路线,是处理器调度的最小单元,也可以称为轻量级线程。线程可以对进程的内存空间和资源分配进行访问,并与同一进程中的其他线程共享。因此,线程的上下文切换的开销比创建进程小得多。

一个进程可以拥有多个线程,每个线程必须有一个父进程。线程不拥有系统资源,它只具有运行时所必须的一些数据结构,如堆栈/寄存器与线程控制块(TCB),线程与其父进程的其他进程共享该进程所拥有的全部资源。要注意的是,由于线程共享了进程的资源和地址空间,因此,任何线程对系统资源的操作都会给其他进程带来影响。由此可知,多线程中的同步是一个非常重要的问题。在多线程系统中,进程与线程的关系如图4所示

在Linux系统中,线程分为3种:①用户线程 ②轻量级线程 ③内核线程

下一节:http://blog.csdn.net/mybelief321/article/details/9054405

分享到:
评论

相关推荐

    linux编程技术-多线程-网络编程

    本资料集专注于"Linux编程技术-多线程-网络编程",它涵盖了UNIX环境高级编程、Linux网络编程、Linux多线程编程、Linux窗口编程以及Linux脚本编程等多个核心主题。这些内容都是构建高效、可靠且可扩展的Linux应用的...

    Linux多线程服务端编程-使用muduo C++网络库

    作者: 陈硕 《Linux多线程服务端编程:使用muduo C++网络库》主要讲述采用现代C++在x86-64 ...掌握一种进程间通信方式和一种多线程网络编程模型就足以应对日常开发任务,编写运行于公司内网环境的分布式服务系统。

    Linux下C语言编程--线程操作

    相较于进程,线程之间的切换成本更低,共享资源更为便捷,因此在多任务处理场景中具有显著优势。本文将详细介绍如何在Linux环境下使用C语言进行线程的创建与基本操作,并简要提及一些高级特性。 #### 一、线程基础...

    嵌入式软件开发技术:第5章 嵌入式Linux多线程编程.ppt

    嵌入式Linux多线程编程是嵌入式系统开发中的一种重要技术,能够提高系统的效率和响应速度。本章节将详细介绍嵌入式Linux多线程编程的基本概念、线程的创建、同步和互斥、线程属性、多线程实验等方面的知识点。 1. ...

    Linux下的多线程编程.pdf

    多线程编程的优点之一是它是一种非常“节俭”的多任务操作方式。与进程相比,多线程的优点之一是它可以节约系统资源,一个进程的开销大约是一个线程开销的30倍左右。另外,多线程之间的通信机制也非常方便,多个线程...

    多线程编程指南--linux多线程编程的好东东

    ### 多线程编程指南——基于POSIX标准的Linux多线程编程 #### 前言 《多线程编程指南》是一份详尽的技术文档,由Sun Microsystems, Inc.编写,旨在帮助开发者掌握基于POSIX(Portable Operating System Interface...

    Linux多线程编程手册

    Linux多线程编程是现代操作系统中应用广泛的编程模式,尤其适用于需要同时执行多个任务的应用程序,它能够在多处理器或多核CPU系统中有效提升程序的执行效率,优化资源利用。多线程编程允许在同一个进程中创建多个...

    Linux系统下的多线程编程入门.pdf

    在Linux系统下进行多线程编程是开发高效并发应用程序的关键技术之一。本文将深入探讨Linux环境中的多线程概念、创建与管理线程的方法、线程同步与通信机制,以及多线程编程中可能遇到的问题和解决策略。 一、多线程...

    多线程编程指南--c版

    1. **多线程概念**:多线程是指在一个进程中可以同时执行多个线程,每个线程都有自己的程序计数器、系统栈、局部变量和状态。这种方式允许程序并行执行不同的任务,提高系统资源利用率和程序响应速度。 2. **线程...

    实验二、嵌入式Linux多线程编程实验

    实验二的目的是让学生深入理解嵌入式Linux环境下的多线程编程,这涉及到对线程概念、创建和管理的理解,以及如何在编程中引入线程库。线程是操作系统资源调度的基本单位,允许在一个进程中并发执行多个执行路径,...

    linux 多线程编程

    使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。使用多线程的理由之二是线程间方便的通信机制。对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种...

    嵌入式Linux应用程序开发详解-第9章(多线程编程)

    ### 嵌入式Linux应用程序开发详解:多线程编程 #### 1. Linux线程概述 在嵌入式Linux应用程序开发中,...通过深入学习和实践,开发者可以充分利用Linux多线程编程的强大功能,构建高性能、高可靠性的嵌入式应用系统。

    linux多线程编程指南

    ### Linux多线程编程指南知识点总结 #### 一、多线程基础介绍 - **定义多线程术语:** - **线程(Thread)**:进程内的一个执行单元,是CPU调度的基本单位。 - **并发(Concurrency)**:多个任务同时进行的概念,但...

    Linux多进程编程-详细讲解.pptx

    Linux 多进程编程是指在 Linux 操作系统中,使用多个进程来完成不同的任务,以提高系统的性能和可靠性。多进程编程是 Linux 编程中的一种重要技术,广泛应用于服务器端编程、嵌入式系统开发等领域。 Linux 进程介绍...

    Linux多线程 C语言编程关于多线程

    ### Linux多线程 C语言编程知识点总结 #### 一、多线程与多进程编程概述 **多线程**的概念可以追溯到20世纪60年代,然而直到80年代中期,这一机制才被正式引入到Unix系统中。随着计算机硬件的发展及软件需求的增加...

    linux系统下多线程编程.PDF

    Linux系统下的多线程编程是指在Linux操作系统中,使用C语言等编程工具和多线程技术来编写能够同时执行多个任务的程序。多线程编程相较于传统的单线程编程,可以让程序更加高效地使用计算机的CPU资源,提高程序的响应...

    Linux多线程编程的基本的函数-Posix线程编程指南

    Linux多线程编程的基本函数-Posix线程编程指南 本文将详细讲述 Linux 多线程编程的基本函数,特别是 Posix 线程编程指南。线程编程是指在一个进程中创建多个线程,每个线程可以并发执行不同的任务,从而提高程序的...

Global site tag (gtag.js) - Google Analytics