`
king_tt
  • 浏览: 2232686 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

UVa 10004 - Bicoloring

    博客分类:
  • uva
阅读更多

 

FILE 10004-Bicoloring 32340
 
42.67%
8939
 
86.93%

题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105

 

题目类型:搜索

 

题目:

In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

 

  • no node will have an edge to itself.
  • the graph is nondirected. That is, if a nodeais said to be connected to a nodeb, then you must assume thatbis connected toa.
  • the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

 

题目翻译:

1976年“四色定理”在计算机的帮助下被证明。 这个定理宣告任何一个地图都可以只用四种颜色来填充, 并且没有相邻区域的颜色是相同的。

现在让你解决一个更加简单的问题。 你必须决定给定的任意相连的图能不能够用两种颜色填充。 就是说,如果给其中一个分配一种颜色, 要让所有直接相连的两个节点不能是相同的颜色。 为了让问题更简单,你可以假设:

1. 没有节点是连接向它自己的。

2. 是无向图。 即如果a连接b, 那么b也是连接a的

3. 图是强连接的。就是说至少有一条路径可走向所有节点。

 

样例输入:

 

3
3
0 1
1 2
2 0
9
8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0

 

 

 

样例输出:

 

NOT BICOLORABLE.
BICOLORABLE.

 

 



分析与总结:

方法一:广搜BFS

由题目可知,对于每个结点,所有和它相接的点必须和这个点颜色不一样。那么,很自然可以用广搜来做: 选取其中一点,给这个点赋值为一种颜色,可以用数字0来代替,然后进行广搜,那么所有和他相邻的点就可以赋值为另一种颜色,可以用1来代替。如此搜下去, 如果遇到一个点是已经赋值过了的,那就进行判断,他已经有的值是不是和这次要给它的值相同的,如果是相同的,就继续。如果不同的话,那么直接判断为不可以。

 

BFS代码:

 

#include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 210
using namespace std;
int n, m, a, b, G[MAXN][MAXN], lastPos;
int vis[210],edge[250][2];
bool flag;

int que[100000];
void bfs(int pos){
    int front=0, rear=1;
    que[0] = pos;
    while(front < rear){
        int m = que[front++];
        for(int i=0; i<n; ++i){
            if(G[m][i]){ 
                if(!vis[i]){
                    que[rear++] = i;
                    vis[i] = vis[m]+1;
                }
                else if(vis[i]==vis[m]){
                    flag = true;
                    return;
                }
            }
        }
    }
}
int main(){
#ifdef LOCAL
    freopen("input.txt","r",stdin);
#endif
    while(~scanf("%d",&n) && n){
        memset(G, 0,sizeof(G));
        scanf("%d",&m);
        for(int i=0; i<m; ++i){
            scanf("%d %d",&a,&b);
            G[a][b] = 1;
            G[b][a] = 1;
        }
        memset(vis, 0, sizeof(vis));
        vis[0] = 1;
        flag = false;
        bfs(0);
        
        if(flag) printf("NOT BICOLORABLE.\n");
        else printf("BICOLORABLE.\n");
    }
    return 0;
} 



 

 

 

方法二: 深搜DFS

同样,这题也可以用深搜来做。 深搜的基本思想是,沿着一个方向不断搜下去,没走一步都进行染色,当前这一点的色和上一点的色相反。如果搜到了一个染过的(即有回环),那么也进行判断,已经有的色是不是和这次给它的颜色是否一致的。不一致的话,就判断为不可以。

 

DFS代码:

 

#include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 210
using namespace std;
int n, m, a, b, G[MAXN][MAXN], lastPos;
int vis[210];
bool flag;

void dfs(int pos){
    if(flag) return;
    for(int i=0; i<n; ++i){
        if(G[pos][i]){
            if(vis[i]==-1){
                vis[i] = !vis[pos];
                dfs(i);
                vis[i] = -1;
            }
            else if(vis[i] != !vis[pos]){
                flag = true;
                return;
            }
        }
    }
}

int main(){
#ifdef LOCAL
    freopen("input.txt","r",stdin);
#endif
    while(~scanf("%d",&n) && n){
        memset(G, 0,sizeof(G));
        scanf("%d",&m);
        for(int i=0; i<m; ++i){
            scanf("%d %d",&a,&b);
            G[a][b] = 1;
            G[b][a] = 1;
        }
        flag = false;
        
        memset(vis, -1, sizeof(vis));
        vis[0] = 0;
        dfs(0);

        if(flag) printf("NOT BICOLORABLE.\n");
        else printf("BICOLORABLE.\n");
    }
    return 0;
} 



 

 


—— 生命的意义,在于赋予它意义。
 
原创http://blog.csdn.net/shuangde800By D_Double

 

 

 

 



 

 

 

 

 

分享到:
评论

相关推荐

    UVaOJ-401(Palindromes).zip_401 Palindromes

    标题中的"UVaOJ-401(Palindromes)"表明这是一个关于解决UVa Online Judge(UVa OJ)上编号为401的编程挑战,该挑战的主题是"Palindromes",即回文串。回文串是指一个字符串无论从前读到后还是从后读到前都是相同的,...

    Uva 1510 - Neon Sign

    ### Uva 1510 - Neon Sign #### 问题背景与描述 在题目“Uva 1510 - Neon Sign”中,我们面对的是一个霓虹灯招牌设计问题。该霓虹灯招牌由一系列位于圆周上的角点组成,并通过发光管连接这些角点。发光管有两种...

    uva705-Slash-Maze-.rar_Slash_uva705

    【标题】"uva705-Slash-Maze-.rar_Slash_uva705" 指向的是一个在UVa Online Judge (UVa OJ) 上提交并通过的编程问题,具体为问题编号705,名为"Slash Maze"。这个压缩包很可能包含了该问题的解决方案源代码。 ...

    UVA100~200---52道题accept代码,均顺利accept过

    这些文件名代表的是在UVA(University of Virginia)在线判题系统上解决的编程题目,主要是C++语言编写的解决方案。UVA是一个知名的在线编程竞赛平台,它提供了大量的算法问题供程序员挑战,有助于提高编程技能和...

    开源项目-codingsince1985-UVa#uva-online-judge-solutions-in-golang.zip

    开源项目-codingsince1985-UVa#uva-online-judge-solutions-in-golang.zip,两年来每天都在解决一个uva在线裁判问题,算起来…

    UVA133-TheDoleQueue.zip_site:www.pudn.com_uva133

    《UVA133 - 救济金发放问题:The Dole Queue》 在计算机科学领域,算法是解决问题的关键工具,特别是在处理复杂数据结构和优化问题时。UVA(University of Virginia)在线判题系统提供了丰富的算法题目供程序员挑战...

    Algorithm-UVA-Solutions-in-Python.zip

    "Algorithm-UVA-Solutions-in-Python.zip"这个压缩包文件正是针对UVA竞赛中问题的Python 3解决方案集合。 Python作为一门易学且功能强大的编程语言,因其简洁的语法和丰富的库支持,成为了许多算法爱好者和开发者的...

    uva532-Dungeon-Master.rar_dungeon

    《UVA532 Dungeon Master:解密游戏编程的深度探索》 在计算机科学与编程领域,UVA(University of Virginia)在线判题系统是一个深受程序员喜爱的平台,它提供了丰富的算法题目供学习者挑战。其中,编号为532的...

    tpcw-nyu-uva-client 客户端

    "tpcw-nyu-uva-client 客户端"是一个专为TPCW(Transaction Processing Performance Council Workloads)设计的应用程序,由纽约大学(NYU)和弗吉尼亚大学(UVA)共同开发。这个客户端软件主要用于模拟和评估数据库...

Global site tag (gtag.js) - Google Analytics