Siddhi Query Language的官方解释如下:
Siddhi Query Language (SiddhiQL) is designed to process event streams to identify complex event occurrences
Siddhi在4.0版本进行了升级,支持流处理,事件流图:
上图中的几个组件大致说明:
Stream | A logical series of events ordered in time with a uniquely identifiable name, and set of defined attributes with specific data types defining its schema. |
Event | An event is associated with only one stream, and all events of that stream have an identical set of attributes that are assigned specific types (or the same schema). An event contains a timestamp and set of attribute values according to the schema. |
Table | A structured representation of data stored with a defined schema. Stored data can be backed by In-Memory , RDBMs , MongoDB , etc. to be accessed and manipulated at runtime. |
Query | A logical construct that processes events in streaming manner by combining existing streams and/or tables, and generates events to an output stream or table. A query consumes one or more input streams, and zero or one table. Then it processes these events in a streaming manner and publishes the output events to streams or tables for further processing or to generate notifications. |
Source | A contract that consumes data from external sources (such as TCP , Kafka , HTTP , etc)in the form of events, then converts each event (which can be in XML , JSON , binary , etc. format) to a Siddhi event, and passes that to a Stream for processing. |
Sink | A contract that takes events arriving at a stream, maps them to a predefined data format (such as XML , JSON , binary , etc), and publishes them to external endpoints (such as E-mail , TCP , Kafka , HTTP , etc). |
Input Handler | A mechanism to programmatically inject events into streams. |
Stream/Query Callback | A mechanism to programmatically consume output events from streams and queries. |
Partition | A logical container that isolates the processing of queries based on partition keys. Here, a separate instance of queries is generated for each partition key to achieve isolation. |
Inner Stream | A positionable stream that connects portioned queries within their partitions, preserving isolation. |
Siddhi SQL 4.0版本相比于3.0版本增加了流处理的支持
基本语法:
<siddhi app> : <app annotation> * ( <stream definition> | <table definition> | ... ) + ( <query> | <partition> ) + ;
SiddhiQL主要包括以下几个方面:
- 事件流定义(Event Stream Definitions)
- 事件表定义(Event Table Definitions)
- 分区(Partitions)
- 查询(Queries)
相关推荐
内容概要:本文提供了详细的MongoDB分片集群的搭建指导,涵盖了从环境准备、配置文件编写、副本集的建立、主节点的选择、配置服务器和数据分片服务器的配置到最后的路由节点的搭建与操作整个流程,以及对数据库的哈希与范围两种分片策略的应用介绍和具体命令执行。 适合人群:熟悉NoSQL数据库概念并对MongoDB有一定了解的技术人员,尤其是在大型数据管理和分布式数据库架构设计中有需求的开发者。 使用场景及目标:帮助技术人员掌握构建高效能、高可用性的MongoDB分片集群的方法,适用于处理大规模、实时性强的数据存储与读取场景。 其他说明:文中通过实例演示了每个步骤的具体操作方法,便于跟随文档实操,同时也介绍了可能遇到的问题及其解决方案,如在没有正确配置的情况下试图写入数据时出现错误等情况的处理。
CPPC++_嵌入式硬件的物联网解决方案blinker库与Arduino ESP8266 ESP32一起工作
CPPC++_逆向调用QQ Mojo IPC与WeChat XPlugin
CPPC++_现代活动指标
CPPC++_Xournal是一款手写笔记软件,支持PDF注释,使用C语言编写,支持GTK3,支持Linux,如Ubu
资源概述: 本资源提供了一套完整的学生实习管理系统解决方案,涵盖了前台小程序页面与后台管理系统两大模块。前台小程序页面设计简洁直观,用户可根据不同身份(学生或企业)进行登录。学生用户能够方便地浏览并投递感兴趣的实习岗位,而企业用户则能轻松发布实习信息,吸引优秀人才。后台管理系统功能全面,包括个人中心、首页、学生管理、教师管理、企业管理、招聘管理、评分管理以及实习管理等多个方面,为管理员提供了强大的数据管理和操作工具。 技术栈亮点: SSM框架:系统后台采用Spring、Spring MVC和MyBatis Plus(简称SSM)作为核心开发框架,确保了系统的稳定性、可扩展性和可维护性。Spring作为控制反转(IoC)和面向切面编程(AOP)的容器,为系统提供了强大的业务逻辑处理能力;Spring MVC则负责处理Web请求和响应,实现了前后端的分离;MyBatis Plus作为持久层框架,简化了数据库操作,提高了开发效率。 MySQL数据库:系统采用MySQL作为数据库存储解决方案,支持大数据量的存储和高效查询。 如有侵权请联系我删除,谢谢
微服务闪聚支付项目
博客链接 https://blog.csdn.net/weixin_47560078/article/details/143714557 文章从原理介绍出发,实现了 Rust 与 Java 的互调。利用 JNI 技术,可以充分发挥 Rust 的性能优势,同时保持 Java 的跨平台特性。这种技术组合适用于对性能要求较高的应用场景,如图像处理、数据分析和系统级编程等。
cppc++
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
分布式事务lcn
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
cppc++
安卓手机与电脑的socket通信源码
Anaconda:JupyterNotebook使用教程.docx
Amazon S3:S3静态网站托管教程.docx
Python商品销售数据分析可视化项目源码(期末大作业).zip,个人经导师指导并认可通过的98分大作业设计项目。主要针对计算机相关专业的正在做期末大作业设计的学生和需要项目实战练习的学习者,可作为课程设计、期末大作业,代码资料完整下载可用。 Python商品销售数据分析可视化项目源码(期末大作业).zip,个人经导师指导并认可通过的98分大作业设计项目。主要针对计算机相关专业的正在做期末大作业设计的学生和需要项目实战练习的学习者,可作为课程设计、期末大作业,代码资料完整下载可用。Python商品销售数据分析可视化项目源码(期末大作业).zip,个人经导师指导并认可通过的98分大作业设计项目。主要针对计算机相关专业的正在做期末大作业设计的学生和需要项目实战练习的学习者,可作为课程设计、期末大作业,代码资料完整下载可用。Python商品销售数据分析可视化项目源码(期末大作业).zip,个人经导师指导并认可通过的98分大作业设计项目。主要针对计算机相关专业的正在做期末大作业设计的学生和需要项目实战练习的学习者,可作为课程设计、期末大作业,代码资料完整下载可用。Python商品销售数据分析
CPPC++_wechathookWeChatApi微信Api微信hook微信接口python微信接口java微信Ap