`
leonzhx
  • 浏览: 793404 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论
阅读更多

1. why data compression

    --  To save space when storing it.

    --  To save time when transmitting it.

    --  Most files have lots of redundancy.

 

 

2.  Lossless compression and expansion

    --  Message: Binary data B we want to compress.

    --  Compress: Generates a "compressed" representation C (B).

    --  Expand: Reconstructs original bitstream B.

    --  Compression ratio. Bits in C (B) / bits in B.



 

3.  Fixed-length code: k-bit code supports alphabet of size 2^k

 

4.  Reading and writing binary data

 

public class BinaryStdIn {
    boolean readBoolean() {} //read 1 bit of data and return as a boolean value
    char readChar() {} //read 8 bits of data and return as a char value
    char readChar(int r) {} //read r bits of data and return as a char value
    [similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]
    boolean isEmpty() {} //is the bitstream empty?
    void close() {} //close the bitstream
}

public class BinaryStdOut {
    void write(boolean b) {} //write the specified bit
    void write(char c) {} //write the specified 8-bit char
    void write(char c, int r) {} //write the r least significant bits of the specified char
    [similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]
    void close() {} //close the bitstream
}

 

 

5.  examine the contents of a bitstream:



6.  Proposition. No algorithm can compress every bitstream.

    Pf 1. [by contradiction]

    --  Suppose you have a universal data compression algorithm U that can compress every bitstream.

    --  Given bitstream B0, compress it to get smaller bitstream B1.

    --  Compress B1 to get a smaller bitstream B2.

    --  Continue until reaching bitstream of size 0.

    --  Implication: all bitstreams can be compressed to 0 bits!

 

    Pf 2. [by counting]

    --  Suppose your algorithm that can compress all 1,000-bit streams.

    --  2^1000 possible bitstreams with 1,000 bits.

    --  Only 1 + 2 + 4 + … + 2^998 + 2^999 < 2^1000 can be encoded with ≤ 999 bits. Similarly, only 1 in 2^499 bitstreams can be encoded with ≤ 500 bits!

 

7.  Run-length encoding:

    --  Simple type of redundancy in a bitstream: Long runs of repeated bits.

    --  Representation: k-bit counts to represent alternating runs of 0s and 1s. If repeats longer than 2^k-1, intersperse runs of length 0.

    --  Java implementation

 

public class RunLength
{
    private final static int R = 256; //maximum run-length count
    private final static int lgR = 8;  //number of bits per count
    
    public static void compress()
    {
        char repeats = 0;
        boolean bit = false
        while (!BinaryStdIn.isEmpty())
        {
             if (  BinaryStdIn.readBoolean() == bit ) {
                  repeats ++;
                  if ( repeats == R-1) {
                      repeats = 0;
                      bit = !bit;
                      BinaryStdout.write(repeats);  
                }
             }
             else {
                 repeats = 1;
                 bit = !bit;
                 BinaryStdout.write(repeats);
            }
        }
        if ( repeats > 0 ) {
            BinaryStdout.write(repeats);   
        }
    }

    public static void expand()
    {
        boolean bit = false;
        while (!BinaryStdIn.isEmpty())
        {
            int run = BinaryStdIn.readInt(lgR); //read 8-bit count from standard input
            for (int i = 0; i < run; i++)
                BinaryStdOut.write(bit); //write 1 bit to standard output
            bit = !bit;
        }
        BinaryStdOut.close(); //pad 0s for byte alignment
    }
}

 

8.  Avoid ambiguity: Ensure that no codeword is a prefix of another.

    --  Fixed-length code.

    --  Append special stop char to each codeword.

    --  General prefix-free code.

 

9. Prefix-free code:

    -- Representation:

        --  A binary trie.

        --  Chars in leaves.

        --  Codeword is path from root to leaf.

    --  Compression:

        --  Method 1: start at leaf; follow path up to the root; print bits in reverse.

        --  Method 2: create ST of key-value pairs.

    --  Expansion.

        --  Start at root.

        --  Go left if bit is 0; go right if 1.

        --  If leaf node, print char and return to root.


    --  trie node data type

 

private static class Node implements Comparable<Node>
{
    private final char ch; // used only for leaf nodes
    private final int freq; // used only for compress
    private final Node left, right;

    public Node(char ch, int freq, Node left, Node right)
    {
        this.ch = ch;
        this.freq = freq;
        this.left = left;
        this.right = right;
    }

    public boolean isLeaf()
    { return left == null && right == null; }

    public int compareTo(Node that)
    { return this.freq - that.freq; }

}

    --  expansion implementation: performance linear in input size

 

  

public void expand()
{
    Node root = readTrie(); //read in encoding trie
    int N = BinaryStdIn.readInt(); //read in number of chars
    for (int i = 0; i < N; i++)
    {
        Node x = root;
        while (!x.isLeaf())
        {
            if (!BinaryStdIn.readBoolean())
                x = x.left;
            else
                x = x.right;
        }
        BinaryStdOut.write(x.ch, 8);
    }
    BinaryStdOut.close();
}

    --  transmit the trie

        --  write: write preorder traversal of trie; mark leaf and internal nodes with a bit.

 

private static void writeTrie(Node x)
{
    if (x.isLeaf())
    {
        BinaryStdOut.write(true);
        BinaryStdOut.write(x.ch, 8);
        return;
    }
    BinaryStdOut.write(false);
    writeTrie(x.left);
    writeTrie(x.right);
}

        --  read: reconstruct from preorder traversal of trie.

 

 

private static Node readTrie()
{
    if (BinaryStdIn.readBoolean())
    {
        char c = BinaryStdIn.readChar(8);
        return new Node(c, 0, null, null);
    }
    Node x = readTrie();
    Node y = readTrie();
    return new Node('\0', 0, x, y);
}

 

 

 

10.  Shannon-Fano algorithm ( top down ):

    --  Partition symbols S into two subsets S0 and S1 of (roughly) equal freq.

    --  Codewords for symbols in S0 start with 0; for symbols in S1 start with 1.

    --  Recur in S0 and S1.

    --  not optimal

 

11.  Huffman algorithm ( bottom up ):

    --  Count frequency freq[i] for each char i in input.

    --  Start with one node corresponding to each char i (with weight freq[i]).

    --  Repeat until single trie formed:

        --  select two tries with min weight freq[i] and freq[j]

        --  merge into single trie with weight freq[i] + freq[j]

    --  Java Implementaton:

private static Node buildTrie(int[] freq)
{
    MinPQ<Node> pq = new MinPQ<Node>();
    for (char i = 0; i < R; i++)
        if (freq[i] > 0)
            pq.insert(new Node(i, freq[i], null, null));
    while (pq.size() > 1)
    {
        Node x = pq.delMin();
        Node y = pq.delMin();
        Node parent = new Node('\0', x.freq + y.freq, x, y);
        pq.insert(parent);
    }
    return pq.delMin();
}

    --  Encoding:

        --  Pass 1: tabulate char frequencies and build trie.

        --  Pass 2: encode file by traversing trie or lookup table.

        --  Running time:  N + R log R .

 

12.  Different compression modules:

    --  Static model. Same model for all texts.

        -  Fast.( no pre-scan, no model transmit ) 

        -  Not optimal: different texts have different statistical properties.

        -  Ex: ASCII, Morse code.

    --  Dynamic model. Generate model based on text.

        -  Preliminary pass needed to generate model.

        -  Must transmit the model.

        -  Ex: Huffman code.

    --  Adaptive model. Progressively learn and update model as you read text.

        -  More accurate modeling produces better compression.

        -  Decoding must start from beginning.

        -  Ex: LZW.

 

13.  Lempel-Ziv-Welch compression:

    --  Create ST associating W-bit codewords with string keys.

    --  Initialize ST with codewords for single-char keys.

    --  Find longest string s in ST that is a prefix of unscanned part of input.

    --  Write the W-bit codeword associated with s.

    --  Add s + c to ST, where c is next char in the input.


    --  Representation of LZW compression code table: A trie to support longest prefix match.


     --  Java Implementatin of compression:

public static void compress()
{
    String input = BinaryStdIn.readString();
    TST<Integer> st = new TST<Integer>();
    //codewords for singlechar, radix R keys
    for (int i = 0; i < R; i++)
        st.put("" + (char) i, i);
    int code = R+1;

    while (input.length() > 0)
    {
        //find longest prefix match s
        String s = st.longestPrefixOf(input);
        //write W-bit codeword for s
        BinaryStdOut.write(st.get(s), W);
        int t = s.length();
        //L = 2^W - 1, the max codes
        if (t < input.length() && code < L)
            st.put(input.substring(0, t+1), code++);
        input = input.substring(t);
    }
    //write "stop" codeword and close output stream
    BinaryStdOut.write(R, W);
    BinaryStdOut.close();
}

     --  LZW expansion

        --  Create ST associating string values with W-bit keys.

        --  Initialize ST to contain single-char values.

        --  Read a W-bit key.

        --  Find associated string value in ST and write it out.

        --  Update ST.

        --  Representation of expansion code table : An array of size 2^W.

        --  tricky case:



14.  Data compression summary

    --  Lossless compression.

        -  Represent fixed-length symbols with variable-length codes. [Huffman]

        -  Represent variable-length symbols with fixed-length codes. [LZW]

    --  Theoretical limits on compression. Shannon entropy: H(X) = - Sum ( i ) { p(xi) lg p(xi) }

 

 

  • 大小: 13.3 KB
  • 大小: 41.8 KB
  • 大小: 27.1 KB
  • 大小: 18.8 KB
  • 大小: 41.2 KB
  • 大小: 18.3 KB
  • 大小: 26.3 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics