`
leonzhx
  • 浏览: 793300 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论
阅读更多

1.  Digraph: Set of vertices connected pairwise by directed edges.

 

2.  Digraph applications :



 

3.  Some digraph problems:

    --  Path: Is there a directed path from s to t ?

    --  Shortest path: What is the shortest directed path from s to t ?

    --  Topological sort: Can you draw a digraph so that all edges point upwards?

    --  Strong connectivity: Is there a directed path between all pairs of vertices?

    --  Transitive closure: For which vertices v and w is there a path from v to w ?

    --  PageRank: What is the importance of a web page?

 

4.  Digraph API:

public class Digraph {
    Digraph(int V) {} //create an empty digraph with V vertices
    Digraph(In in) {} //create a digraph from input stream
    void addEdge(int v, int w) {} //add a directed edge v→w
    Iterable<Integer> adj(int v) {} //vertices pointing from v
    int V() {} //number of vertices
    int E() {} //number of edges
    Digraph reverse() {} //reverse of this digraph
    String toString() {} //string representation
}

 

5.  Adjacency-lists digraph representation

    --  Maintain vertex-indexed array of lists



 

    --  Java implementation

public class Digraph
{
    private final int V;
    private final Bag<Integer>[] adj;
    public Digraph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}

 

    --  Performance :



 

6.  Depth-first search in digraphs : Same method as for undirected graphs.

    --  Every undirected graph is a digraph (with edges in both directions).

    --  DFS is a digraph algorithm.

    --  Algorithm:


     --  Java Implementation :

public class DirectedDFS
{
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s)
    {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    
    public boolean visited(int v)
    { return marked[v]; }
}

 

7.  Reachability application:

    --  program control-flow analysis:

        1)  Every program is a digraph.

             --  Vertex = basic block of instructions (straight-line program).

             --  Edge = jump.

        2)  Dead-code elimination.

             --  Find (and remove) unreachable code.

        3)  Infinite-loop detection.

             --  Determine whether exit is unreachable.

    --  mark-sweep garbage collector:

        1)  Every data structure is a digraph.

             --  Vertex = object.

             --  Edge = reference.

         2)  Roots: Objects known to be directly accessible by program (e.g., stack).

         3)  Reachable objects: Objects indirectly accessible by program

         4)  Mark-sweep algorithm:

             --  Mark: mark all reachable objects.

             --  Sweep: if object is unmarked, it is garbage (so add to free list).

         5)  Memory cost: Uses 1 extra mark bit per object (plus DFS stack).

 

8.  Breadth-first search in digraphs : Same method as for undirected graphs.

    --  Every undirected graph is a digraph (with edges in both directions).

    --  BFS is a digraph algorithm.

    --  BFS algorithm :



    --  BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E + V.

 

9.  Multiple-source shortest paths: Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex. Solution: use BFS, but initialize by enqueuing all source vertices.

 

10.  Web crawler :

    --  Goal: Crawl web, starting from some root web page.

    --  Solution:

        --  Choose root web page as source s.

        --  Maintain a Queue of websites to explore.

        --  Maintain a SET of discovered websites.

        --  Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

    --  Java Implementation:

Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();
String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);
while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readAll();
    String regexp = "http://(\\w+\\.)*(\\w+)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}

 

 

11.  Precedence scheduling :

    --  Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

    --  Digraph model. vertex = task; edge = precedence constraint.

    --  Solution : Topological sort : Redraw DAG (Directed Acyclic Graph) so all edges point upwards.

 

12.  Topological sort :

    --  Algorithm:

        1)  Run depth-first search.

        2)  Return vertices in reverse postorder.

    --  Java Implementation:

public class DepthFirstOrder
{
    private boolean[] marked;
    private Stack<Integer> reversePost;
    public DepthFirstOrder(Digraph G)
    {
        reversePost = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
                reversePost.push(v);
    }

    public Iterable<Integer> reversePost()
    { return reversePost; }
}

     --  Proposition. Reverse DFS postorder of a DAG is a topological order.

         Pf. Consider any edge v→w. When dfs(v) is called:

          --  Case 1: dfs(w) has already been called and returned.

              Thus, w was done before v.

          --  Case 2: dfs(w) has not yet been called.

              dfs(w) will get called directly or indirectly by dfs(v) and will finish before dfs(v).

              Thus, w will be done before v.

          --  Case 3: dfs(w) has already been called, but has not yet returned.

              Can’t happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

 

13.  Proposition. A digraph has a topological order iff no directed cycle.

    --  If directed cycle, topological order impossible.

    --  If no directed cycle, DFS-based algorithm finds a topological order.

 

14.  Directed cycle detection application :

    --  precedence scheduling, a directed cycle implies scheduling problem is infeasible.

    --  cyclic inheritance. The Java compiler does cycle detection.

    --  spreadsheet recalculation

 

 15.  Strongly Connected: Vertices v and w are strongly connected if there is both a directed path

from v to w and a directed path from w to v. Strong connectivity is an equivalence relation:

    --  v is strongly connected to v.

    --  If v is strongly connected to w, then w is strongly connected to v.

    --  If v is strongly connected to w and w to x, then v is strongly connected to x.

A strong component is a maximal subset of strongly-connected vertices.

 

16.  Strong component application :

    --  ecological food webs

        1)  Food web graph. Vertex = species; Edge = from producer to consumer.

        2)  Strong component. Subset of species with common energy flow.

    --  software modules

        1)  Software module dependency graph. Vertex = software module; Edge: from module to dependency.

        2)  Strong component. Subset of mutually interacting modules.

        3)  Usage : 

             --  Package strong components together.

             --  Use to improve design.

 

16.  Kosaraju-Sharir algorithm:

    --  Reverse graph: Strong components in G are same as in G-reverse.

    --  Kernel DAG: Contract each strong component into a single vertex.



 

    --  Algorithm : 

        --  Phase 1: run DFS on G-reverse to compute reverse postorder.

        --  Phase 2: run DFS on G, considering vertices in order given by first DFS.

    --  Java Implementation :

public class KosarajuSharirSCC
{
    private boolean marked[];
    private int[] id;
    private int count;
    public KosarajuSharirSCC(Digraph G)
    {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
        for (int v : dfs.reversePost())
        {
            if (!marked[v])
            {
                dfs(G, v);
                count++;
            }
        }
    }
    private void dfs(Digraph G, int v)
    {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }
    public boolean stronglyConnected(int v, int w)
    { return id[v] == id[w]; }
}

 

  • 大小: 46.3 KB
  • 大小: 41 KB
  • 大小: 24 KB
  • 大小: 8.5 KB
  • 大小: 14.6 KB
  • 大小: 40.2 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics