`
san_yun
  • 浏览: 2662064 次
  • 来自: 杭州
文章分类
社区版块
存档分类
最新评论

深入JVM锁机制2-Lock

 
阅读更多

前文(深入JVM锁机制-synchronized)分析了JVM中的synchronized实现,本文继续分析JVM中的另一种锁Lock的实现。与synchronized不同的是,Lock完全用Java写成,在java这个层面是无关JVM实现的。

在 java.util.concurrent.locks包中有很多Lock的实现类,常用的有ReentrantLock、 ReadWriteLock(实现类ReentrantReadWriteLock),其实现都依赖 java.util.concurrent.AbstractQueuedSynchronizer类,实现思路都大同小异,因此我们以 ReentrantLock作为讲解切入点。

1. ReentrantLock的调用过程

经过观察ReentrantLock把所有Lock接口的操作都委派到一个Sync类上,该类继承了AbstractQueuedSynchronizer:

  1. static abstract class Sync extends AbstractQueuedSynchronizer  

Sync又有两个子类:

  1. final static class NonfairSync extends Sync  
  1. final static class FairSync extends Sync  

显然是为了支持公平锁和非公平锁而定义,默认情况下为非公平锁。

先理一下Reentrant.lock()方法的调用过程(默认非公平锁):

这 些讨厌的Template模式导致很难直观的看到整个调用过程,其实通过上面调用过程及AbstractQueuedSynchronizer的注释可以 发现,AbstractQueuedSynchronizer中抽象了绝大多数Lock的功能,而只把tryAcquire方法延迟到子类中实现。 tryAcquire方法的语义在于用具体子类判断请求线程是否可以获得锁,无论成功与否AbstractQueuedSynchronizer都将处理 后面的流程。

2. 锁实现(加锁)

简单说 来,AbstractQueuedSynchronizer会把所有的请求线程构成一个CLH队列,当一个线程执行完毕(lock.unlock())时 会激活自己的后继节点,但正在执行的线程并不在队列中,而那些等待执行的线程全部处于阻塞状态,经过调查线程的显式阻塞是通过调用 LockSupport.park()完成,而LockSupport.park()则调用sun.misc.Unsafe.park()本地方法,再进 一步,HotSpot在Linux中中通过调用pthread_mutex_lock函数把线程交给系统内核进行阻塞。

该队列如图:

与synchronized相同的是,这也是一个虚拟队列,不存在队列实例,仅存在节点之间的前后关系。令人疑惑的是为什么采用CLH队列呢?原生的CLH队列是用于自旋锁,但Doug Lea把其改造为阻塞锁。

当有线程竞争锁时,该线程会首先尝试获得锁,这对于那些已经在队列中排队的线程来说显得不公平,这也是非公平锁的由来,与synchronized实现类似,这样会极大提高吞吐量。

如 果已经存在Running线程,则新的竞争线程会被追加到队尾,具体是采用基于CAS的Lock-Free算法,因为线程并发对Tail调用CAS可能会 导致其他线程CAS失败,解决办法是循环CAS直至成功。AbstractQueuedSynchronizer的实现非常精巧,令人叹为观止,不入细节 难以完全领会其精髓,下面详细说明实现过程:

2.1 Sync.nonfairTryAcquire

nonfairTryAcquire方法将是lock方法间接调用的第一个方法,每次请求锁时都会首先调用该方法。

  1. final boolean nonfairTryAcquire(int acquires) {  
  2.     final Thread current = Thread.currentThread();  
  3.     int c = getState();  
  4.     if (c == 0) {  
  5.         if (compareAndSetState(0, acquires)) {  
  6.             setExclusiveOwnerThread(current);  
  7.             return true;  
  8.         }  
  9.     }  
  10.     else if (current == getExclusiveOwnerThread()) {  
  11.         int nextc = c + acquires;  
  12.         if (nextc < 0// overflow  
  13.             throw new Error("Maximum lock count exceeded");  
  14.         setState(nextc);  
  15.         return true;  
  16.     }  
  17.     return false;  
  18. }  

该方法会首先判断当前状态,如果c==0说明没有线程正在竞争该锁,如果不c !=0 说明有线程正拥有了该锁。

如 果发现c==0,则通过CAS设置该状态值为acquires,acquires的初始调用值为1,每次线程重入该锁都会+1,每次unlock都会 -1,但为0时释放锁。如果CAS设置成功,则可以预计其他任何线程调用CAS都不会再成功,也就认为当前线程得到了该锁,也作为Running线程,很 显然这个Running线程并未进入等待队列。

如果c !=0 但发现自己已经拥有锁,只是简单地++acquires,并修改status值,但因为没有竞争,所以通过setStatus修改,而非CAS,也就是说这段代码实现了偏向锁的功能,并且实现的非常漂亮。

2.2 AbstractQueuedSynchronizer.addWaiter

addWaiter方法负责把当前无法获得锁的线程包装为一个Node添加到队尾:

  1. private Node addWaiter(Node mode) {  
  2.     Node node = new Node(Thread.currentThread(), mode);  
  3.     // Try the fast path of enq; backup to full enq on failure  
  4.     Node pred = tail;  
  5.     if (pred != null) {  
  6.         node.prev = pred;  
  7.         if (compareAndSetTail(pred, node)) {  
  8.             pred.next = node;  
  9.             return node;  
  10.         }  
  11.     }  
  12.     enq(node);  
  13.     return node;  
  14. }  

其中参数mode是独占锁还是共享锁,默认为null,独占锁。追加到队尾的动作分两步:

  1. 如果当前队尾已经存在(tail!=null),则使用CAS把当前线程更新为Tail
  2. 如果当前Tail为null或则线程调用CAS设置队尾失败,则通过enq方法继续设置Tail

下面是enq方法:

  1. private Node enq(final Node node) {  
  2.     for (;;) {  
  3.         Node t = tail;  
  4.         if (t == null) { // Must initialize  
  5.             Node h = new Node(); // Dummy header  
  6.             h.next = node;  
  7.             node.prev = h;  
  8.             if (compareAndSetHead(h)) {  
  9.                 tail = node;  
  10.                 return h;  
  11.             }  
  12.         }  
  13.         else {  
  14.             node.prev = t;  
  15.             if (compareAndSetTail(t, node)) {  
  16.                 t.next = node;  
  17.                 return t;  
  18.             }  
  19.         }  
  20.     }  
  21. }  


该方法就是循环调用CAS,即使有高并发的场景,无限循环将会最终成功把当前线程追加到队尾(或设置队头)。总而言之,addWaiter的目的就是通过CAS把当前现在追加到队尾,并返回包装后的Node实例。

把线程要包装为Node对象的主要原因,除了用Node构造供虚拟队列外,还用Node包装了各种线程状态,这些状态被精心设计为一些数字值:

  • SIGNAL(-1) :线程的后继线程正/已被阻塞,当该线程release或cancel时要重新这个后继线程(unpark)
  • CANCELLED(1):因为超时或中断,该线程已经被取消
  • CONDITION(-2):表明该线程被处于条件队列,就是因为调用了Condition.await而被阻塞
  • PROPAGATE(-3):传播共享锁
  • 0:0代表无状态

2.3 AbstractQueuedSynchronizer.acquireQueued

acquireQueued的主要作用是把已经追加到队列的线程节点(addWaiter方法返回值)进行阻塞,但阻塞前又通过tryAccquire重试是否能获得锁,如果重试成功能则无需阻塞,直接返回

  1. final boolean acquireQueued(final Node node, int arg) {  
  2.     try {  
  3.         boolean interrupted = false;  
  4.         for (;;) {  
  5.             final Node p = node.predecessor();  
  6.             if (p == head && tryAcquire(arg)) {  
  7.                 setHead(node);  
  8.                 p.next = null// help GC  
  9.                 return interrupted;  
  10.             }  
  11.             if (shouldParkAfterFailedAcquire(p, node) &&  
  12.                 parkAndCheckInterrupt())  
  13.                 interrupted = true;  
  14.         }  
  15.     } catch (RuntimeException ex) {  
  16.         cancelAcquire(node);  
  17.         throw ex;  
  18.     }  
  19. }  


仔 细看看这个方法是个无限循环,感觉如果p == head && tryAcquire(arg)条件不满足循环将永远无法结束,当然不会出现死循环,奥秘在于第12行的parkAndCheckInterrupt会把 当前线程挂起,从而阻塞住线程的调用栈。

  1. private final boolean parkAndCheckInterrupt() {  
  2.     LockSupport.park(this);  
  3.     return Thread.interrupted();  
  4. }  

如 前面所述,LockSupport.park最终把线程交给系统(Linux)内核进行阻塞。当然也不是马上把请求不到锁的线程进行阻塞,还要检查该线程 的状态,比如如果该线程处于Cancel状态则没有必要,具体的检查在shouldParkAfterFailedAcquire中:

  1.   private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {  
  2.       int ws = pred.waitStatus;  
  3.       if (ws == Node.SIGNAL)  
  4.           /* 
  5.            * This node has already set status asking a release 
  6.            * to signal it, so it can safely park 
  7.            */  
  8.           return true;  
  9.       if (ws > 0) {  
  10.           /* 
  11.            * Predecessor was cancelled. Skip over predecessors and 
  12.            * indicate retry. 
  13.            */  
  14.    do {  
  15. node.prev = pred = pred.prev;  
  16.    } while (pred.waitStatus > 0);  
  17.    pred.next = node;  
  18.       } else {  
  19.           /* 
  20.            * waitStatus must be 0 or PROPAGATE. Indicate that we 
  21.            * need a signal, but don't park yet. Caller will need to 
  22.            * retry to make sure it cannot acquire before parking.  
  23.            */  
  24.           compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  
  25.       }   
  26.       return false;  
  27.   }  

检查原则在于:

  • 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark,则返回成功,此时acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞
  • 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞
  • 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同

总体看来,shouldParkAfterFailedAcquire就是靠前继节点判断当前线程是否应该被阻塞,如果前继节点处于CANCELLED状态,则顺便删除这些节点重新构造队列。

至此,锁住线程的逻辑已经完成,下面讨论解锁的过程。

3. 解锁

请求锁不成功的线程会被挂起在acquireQueued方法的第12行,12行以后的代码必须等线程被解锁锁才能执行,假如被阻塞的线程得到解锁,则执行第13行,即设置interrupted = true,之后又进入无限循环。

从 无限循环的代码可以看出,并不是得到解锁的线程一定能获得锁,必须在第6行中调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线 程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓。通过之后将要介绍的解锁机制会看到,第一个被解锁的线程就是Head, 因此p == head的判断基本都会成功。

至此可以看到,把tryAcquire方法延迟到子类中实现的做法非常精妙并具有极强的可扩展性,令人叹为观止!当然精妙的不是这个Templae设计模式,而是Doug Lea对锁结构的精心布局。

解锁代码相对简单,主要体现在AbstractQueuedSynchronizer.release和Sync.tryRelease方法中:

class AbstractQueuedSynchronizer

  1. public final boolean release(int arg) {  
  2.     if (tryRelease(arg)) {  
  3.         Node h = head;  
  4.         if (h != null && h.waitStatus != 0)  
  5.             unparkSuccessor(h);  
  6.         return true;  
  7.     }  
  8.     return false;  
  9. }  

class Sync

  1. protected final boolean tryRelease(int releases) {  
  2.     int c = getState() - releases;  
  3.     if (Thread.currentThread() != getExclusiveOwnerThread())  
  4.         throw new IllegalMonitorStateException();  
  5.     boolean free = false;  
  6.     if (c == 0) {  
  7.         free = true;  
  8.         setExclusiveOwnerThread(null);  
  9.     }  
  10.     setState(c);  
  11.     return free;  
  12. }  


tryRelease与tryAcquire语义相同,把如何释放的逻辑延迟到子类中。tryRelease语义很明确:如果线程多次锁定,则进行多次释放,直至status==0则真正释放锁,所谓释放锁即设置status为0,因为无竞争所以没有使用CAS。

release的语义在于:如果可以释放锁,则唤醒队列第一个线程(Head),具体唤醒代码如下:

  1. private void unparkSuccessor(Node node) {  
  2.     /* 
  3.      * If status is negative (i.e., possibly needing signal) try 
  4.      * to clear in anticipation of signalling. It is OK if this 
  5.      * fails or if status is changed by waiting thread. 
  6.      */  
  7.     int ws = node.waitStatus;  
  8.     if (ws < 0)  
  9.         compareAndSetWaitStatus(node, ws, 0);   
  10.   
  11.     /* 
  12.      * Thread to unpark is held in successor, which is normally 
  13.      * just the next node.  But if cancelled or apparently null, 
  14.      * traverse backwards from tail to find the actual 
  15.      * non-cancelled successor. 
  16.      */  
  17.     Node s = node.next;  
  18.     if (s == null || s.waitStatus > 0) {  
  19.         s = null;  
  20.         for (Node t = tail; t != null && t != node; t = t.prev)  
  21.             if (t.waitStatus <= 0)  
  22.                 s = t;  
  23.     }  
  24.     if (s != null)  
  25.         LockSupport.unpark(s.thread);  
  26. }  


这 段代码的意思在于找出第一个可以unpark的线程,一般说来head.next == head,Head就是第一个线程,但Head.next可能被取消或被置为null,因此比较稳妥的办法是从后往前找第一个可用线程。貌似回溯会导致性 能降低,其实这个发生的几率很小,所以不会有性能影响。之后便是通知系统内核继续该线程,在Linux下是通过pthread_mutex_unlock 完成。之后,被解锁的线程进入上面所说的重新竞争状态。

4. Lock VS Synchronized

AbstractQueuedSynchronizer通过构造一个基于阻塞的CLH队列容纳所有的阻塞线程,而对该队列的操作均通过Lock-Free(CAS)操作,但对已经获得锁的线程而言,ReentrantLock实现了偏向锁的功能。

synchronized 的底层也是一个基于CAS操作的等待队列,但JVM实现的更精细,把等待队列分为ContentionList和EntryList,目的是为了降低线程 的出列速度;当然也实现了偏向锁,从数据结构来说二者设计没有本质区别。但synchronized还实现了自旋锁,并针对不同的系统和硬件体系进行了优 化,而Lock则完全依靠系统阻塞挂起等待线程。

当然Lock比synchronized更适合在应用层扩展,可以继承 AbstractQueuedSynchronizer定义各种实现,比如实现读写锁(ReadWriteLock),公平或不公平锁;同时,Lock对 应的Condition也比wait/notify要方便的多、灵活的多。

分享到:
评论

相关推荐

    synchronized和LOCK的实现原理深入JVM锁机制比较好.docx

    了解 JVM 锁机制中的 synchronized 和 Lock 实现原理 在 Java 中,锁机制是数据同步的关键,存在两种锁机制:synchronized 和 Lock。了解这两种锁机制的实现原理对于理解 Java 并发编程非常重要。 synchronized 锁...

    jvm-anatomy-park-complete

    文章提供了一些关于JVM内部工作原理的深入洞察,但需要指出,由于文章的快速发布的性质,内容主要是基于作者个人经验的趣闻轶事,可能没有经过正式的技术审查,因此使用和信任这些内容需要谨慎。 在给出的内容中,...

    深入JVM内核-原理、诊断与优化ppt.zip

    《深入JVM内核——原理、诊断与优化》是一份深度探讨Java虚拟机核心机制、问题诊断和性能优化的专业资料。这份资料涵盖了JVM的各个方面,对于Java开发者来说,理解和掌握这些知识至关重要。 首先,我们要了解JVM...

    JVM 完整深入解析.pdf

    Java虚拟机(JVM)是运行Java程序的关键平台,其内部结构和内存管理机制非常复杂且精细。它将内存分为若干个不同的数据区域,以便管理Java程序的运行时数据。下面将详细介绍JVM中的运行时数据区,以及Java内存模型...

    weilei-JVM-ppt.rar

    7. **多线程与并发**:讲解JVM中的线程创建、同步机制(如synchronized、Lock),以及并发容器(如ConcurrentHashMap)的实现原理。 8. **类文件结构**:分析.class文件的组成,包括魔数、版本号、常量池、访问标志...

    生产环境jvm调优的实例代码-jvm.zip

    这里我们将详细探讨这些关键知识点,并结合提供的"生产环境jvm调优的实例代码-jvm.zip"中的内容进行深入讲解。 1. **内存配置**:JVM内存分为新生代(Young Generation)、老年代(Tenured Generation/老年代)和...

    Java虚拟机-jvm故障诊断与性能优化-源码

    通过学习这些知识点,并结合《实战Java虚拟机——JVM故障诊断与性能优化》的源码,开发者能够更深入地理解JVM的工作机制,从而更好地优化Java应用的性能,处理各种运行时问题。实践中,不断尝试、调整和学习,才能...

    java课件-7-JVM

    线程同步和锁机制,如synchronized关键字和Lock接口,是Java并发编程的基础。 通过深入学习"java课件-7-JVM",开发者可以更好地理解Java程序的运行机制,优化代码性能,解决内存泄漏和线程安全问题,从而提升软件...

    深入理解JVM

    《深入理解JVM》是一本专注于Java虚拟机(Java Virtual Machine)技术的深度解析书籍,其主要内容涵盖了JVM的工作原理、内存管理、性能优化、类加载机制、垃圾收集以及异常处理等多个关键领域。通过深入学习这本书,...

    Java分布式应用学习笔记03JVM对线程的资源同步和交互机制

    在深入探讨Java虚拟机(JVM)如何处理线程间的资源同步与交互机制之前,我们先来明确几个关键概念:线程、多线程、同步、并发以及它们在Java中的实现方式。Java作为一种广泛应用于分布式系统开发的编程语言,其内部...

    JVM从0-1学习,掌握如何解决JVM相关问题

    2. **类加载机制**:包括加载、验证、准备、解析和初始化五个阶段。理解双亲委派模型,即类加载请求会从顶级加载器开始向下传递,直到找到合适的加载器。 3. **运行时数据区**:主要包括堆、方法区、虚拟机栈、本地...

    jvm视频及笔记

    11. **线程并发**:JVM如何支持多线程,包括线程同步机制如synchronized、Lock等,以及线程池的使用和优化。 通过观看"jvm视频",你可以直观地了解这些概念,并通过"jvm笔记"加深理解和记忆。理论学习后,实践操作...

    inside JVM(深入JAVA虚拟机光盘内容)

    《深入JAVA虚拟机》是一本全面探讨Java虚拟机(JVM)技术的权威书籍,它涵盖了JVM的内部工作机制、性能优化以及相关的调试技巧。在深入理解JVM的过程中,我们首先需要了解JVM的基本结构和运行原理。 Java虚拟机是...

    2015-09-12-Java虚拟机详解----JVM常见问题总结【面试必问】

    2. **锁优化**:包括 synchronized 的升级、Lock接口的使用,以及无锁、乐观锁、读写锁等高级并发控制策略。 3. **并发集合**:如ConcurrentHashMap、CopyOnWriteArrayList等,设计用于高并发场景。 了解并掌握...

    java虚拟机_JVM高级特性与实践最新版

    - 锁与同步:深入理解synchronized、volatile、Lock接口等并发控制机制。 - 并发工具类:分析ConcurrentHashMap、CountDownLatch、CyclicBarrier等并发工具的实现原理及使用场景。 6. **异常处理** - 异常模型:...

    面向Java锁机制的字节码自动重构框架.zip

    本文将深入探讨Java锁机制,并基于提供的"面向Java锁机制的字节码自动重构框架"来讨论其背后的原理和应用。 在Java中,锁主要分为内置锁(也称为监视器锁)和显式锁。内置锁是通过synchronized关键字实现的,它提供...

    jvm虚拟机学习资料.zip

    Java提供了多种锁机制,如synchronized、Lock接口等,理解其工作原理和性能特性对于编写高性能并发代码至关重要。 10. **Class文件结构** (10.Class文件结构.pptx) Class文件包含了类的元数据,理解其结构能帮助...

    JVM高级特性与最佳实践2.0 kindle版本

    - **锁机制**:如synchronized、Lock接口,用于控制多线程访问共享资源。 - **并发工具类**:如ConcurrentHashMap、CountDownLatch、CyclicBarrier等。 - **线程池**:Executor框架,有效管理线程资源,避免过度...

    JVM面试专题及答案.zip

    本专题针对JVM的面试常见问题进行详细解答,旨在帮助求职者或开发者深入理解JVM的工作原理,提高面试竞争力。 1. **JVM概述** - JVM是什么?它是如何工作的? - Java程序是如何在JVM上运行的? - 类加载过程:...

    JVM性能优化(PPT)

    了解锁和同步机制,如synchronized、Lock,以及原子变量类,能帮助优化多线程环境下的性能。 8. **代码优化** 避免无用的对象创建,减少不必要的计算,使用StringBuilder代替String拼接,以及合理使用集合类,都是...

Global site tag (gtag.js) - Google Analytics