TensorFlow:2015年Google开源的机器学习框架。
官方网站:
https://www.tensorflow.org/
官方GitHub仓库:
https://github.com/tensorflow/tensorflow
官方文档:
https://www.tensorflow.org/get_started/
官方文档中文版:
https://github.com/jikexueyuanwiki/tensorflow-zh
Tensor(张量)表示N维数组,Flow(流)表示基于流图的数据计算,TensorFlow为张量从图的一端流到另一端的计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理的系统。TensorFlow支持CNN、RNN和LSTM算法,这些都是目前在图像,语音和自然语言处理领域最流行的深度神经网络模型。采用C++编写,主要提供Python API,也支持C++、Java、Go等。
学习TensorFlow需要具备的知识:数学统计基础(线性代数、概率与统计、多元微积分)、Python(NumPy 科学计算、Scipy 矩阵计算、Pandas 数据分析、Matplotlib 绘图)。
TensorFlow源代码(C++、Python)已超过40w行,确实不是一个能够迅速上手的小项目。
版本:
CentOS 7.2 + Python 2.7.5 + TensorFlow 1.2.0
TensorFlow 0.6.0后支持Python 3.3+、0.12.0后开始支持Windows。推荐在Linux的Python3.5上运行。
相关文章:
TensorFlow 之 入门体验
TensorFlow 之 手写数字识别MNIST
TensorFlow 之 物体检测
TensorFlow 之 构建人物识别系统
(1)安装Python
# python -V
Python 2.7.5
# yum -y install epel-release
# yum -y install python-pip
# yum -y install python-devel
也可以安装Python3
引用
# yum install -y https://centos7.iuscommunity.org/ius-release.rpm
# yum install -y python35u python35u-devel python35u-pip
# python3.5 -V
Python 3.5.3
# which python3.5
/usr/bin/python3.5
从ius可以安装python34u、python35u、python36u。
(2)安装TensorFlow
# pip install --upgrade virtualenv
# virtualenv -p /usr/bin/python --system-site-packages /usr/local/tensorflow2
# source /usr/local/tensorflow2/bin/activate
# python -V
Python 2.7.5
# pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.0-cp27-none-linux_x86_64.whl
*** Google官方推荐通过VirtualEnv构建(创建独立的多Python虚拟环境),这里安装CPU版本也可以安装基于英伟达的GPU版本
*** 通过pip安装是最快的,需要更多定制设置时需要通过源码编译安装
*** 也可以通过Anaconda(用于科学计算的Python发行版) https://www.continuum.io/downloads 安装
*** 还可以通过Docker镜像安装
确认是否支持GPU
# lspci | grep -i nvidia
对比
https://developer.nvidia.com/cuda-gpus 如果GPU支持cuda,就可以安装GPU版。
如果不是从代码安装的TensorFlow,每次执行时都会有以下警告:
引用
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
(3)环境确认
确认python
(tensorflow2) [root@localhost local]# vi hello.py
print("Hello, Python!")
(tensorflow2) [root@localhost local]# python hello.py
Hello, Python!
确认tensorflow
(tensorflow2) [root@localhost local]# vi hello_tf.py
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
(tensorflow2) [root@localhost local]# python hello_tf.py
Hello, TensorFlow!
*** python3输出的是“b'Hello, TensorFlow!'”
(tensorflow2) [root@localhost local]# python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!');
>>> sess = tf.Session()
>>> print(sess.run(hello))
Hello, TensorFlow!
退出当前环境
(tensorflow2) [root@localhost local]# deactivate
(4)卸载TensorFlow
# rm -rf /usr/local/tensorflow2
(5)TensorFlow基础
引入
import tensorflow as tf
常量
const2 = tf.constant(3)
变量
var1 = tf.Variable(0)
符号变量
holder2 = tf.placeholder(tf.int32)
运算
add_op = tf.add(var1, const2)
update_var1 = tf.assign(var1, add_op)
mul_op = tf.multiply(add_op, update_var1)
会话
tf.Session()
调用sess的run方法来启动整个graph,执行程序
*** 在TensorFlow代码中没有if-else来控制代码逻辑,完全是由数据驱动
举例:
# vi add_tf.py
# python add_tf.py
# Import the library
import tensorflow as tf
# Define the graph
const1 = tf.constant(2)
const2 = tf.constant(3)
add_op = tf.add(const1, const2)
# Define the session to run graph
with tf.Session() as sess:
result = sess.run(add_op)
print(result)
版本问题:从1.0开始API变化比较大,一些API已经被移除,比如
引用
tf.mul() -> tf.multiply()
tf.sub() -> tf.subtract()
tf.neg() -> tf.negative()
tf.summary.scalar() -> tf.scalar_summary()
tf.summary.merge_all() -> tf.merge_all_summaries()
tf.summary.FileWriter() -> tf.train.SummaryWriter()
tf.global_variables_initializer() -> tf.initialize_all_variables()
等。
具体可以看官方的
Release Notes,或者这里:
http://www.jianshu.com/p/04850ffc1021
TensorFlow也同时提供了代码自动升级工具:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/compatibility
# python tf_upgrade.py --infile sample1.py --outfile sample.py
基本概念
- 图(Graph):图描述了计算的过程,TensorFlow使用图来表示计算任务。 计算图(Computational Graph)
- 张量(Tensor):TensorFlow使用tensor表示数据。每个Tensor是一个类型化的多维数组。
- 操作(Operation):图中的节点,一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。
- 会话(Session):图必须在“会话”的上下文中被执行。会话将图的op分发到CPU或GPU之类的设备上执行。
- 变量(Variable):运行过程中可以被改变,用于维护状态。(placeholder:占位符变量、feed_dict:传递数据)
TensorFlow虽然封装了大部分深度学习的细节,但还是需要了解深度学习的一些核心概念,比如:
- 用于图像识别的卷积神经网络(CNN, Convolutional Neural Network)
- 用于自然语言处理的循环神经网络(RNN, Recurrent Neural Networks)
(6)TensorBoard 可视化界面
import tensorflow as tf
x = tf.constant(1.0, name='input')
w = tf.Variable(0.8, name='weight')
y = tf.multiply(w, x, name='output')
y_ = tf.constant(0.0, name='correct_value')
loss = tf.pow(y - y_, 2, name='loss')
train_step = tf.train.GradientDescentOptimizer(0.025).minimize(loss)
for value in [x, w, y, y_, loss]:
tf.summary.scalar(value.op.name, value)
summaries = tf.summary.merge_all()
sess = tf.Session()
summary_writer = tf.summary.FileWriter('log_simple_stats', sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(100):
summary_writer.add_summary(sess.run(summaries), i)
sess.run(train_step)
# vi sample_tb.py
# python sample_tb.py
# tensorboard --logdir=log_simple_stats
访问以下URL:
http://localhost:6006/#scalars
http://localhost:6006/#graphs
(7)下载TensorFlow Models
# cd /usr/local/src/
# wget https://codeload.github.com/tensorflow/models/zip/master -O tensorflow-models-master.zip
# unzip tensorflow-models-master.zip
# mv models-master/ /usr/local/tensorflow2/tensorflow-models/
(8)图像识别
# source /usr/local/tensorflow2/bin/activate
(tensorflow) [root@localhost ~]# cd /usr/local/tensorflow2/tensorflow-models/tutorials/image/imagenet/
(tensorflow) [root@localhost ~]# python classify_image.py
引用
giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.89107)
indri, indris, Indri indri, Indri brevicaudatus (score = 0.00779)
lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00296)
custard apple (score = 0.00147)
earthstar (score = 0.00117)
使用在 ImageNet 2012 比赛数据集上训练过的 Inception 模型,识别 JPEG 图像给出最高概率的 5 个预测结果。
默认识别的是一张熊猫的图片/tmp/imagenet/cropped_panda.jpg。
可以通过参数--image_file来指定任意图片。
测试一张猫的图片:
(tensorflow) [root@localhost imagenet]# python classify_image.py --image_file=/tmp/cat-test.jpg
引用
Persian cat (score = 0.89983)
tabby, tabby cat (score = 0.01014)
Egyptian cat (score = 0.00906)
lynx, catamount (score = 0.00490)
Angora, Angora rabbit (score = 0.00378)
测试一张狗的图片:
(tensorflow) [root@localhost imagenet]# python classify_image.py --image_file=/tmp/dog-test.jpg
引用
Siberian husky (score = 0.46671)
Eskimo dog, husky (score = 0.38190)
dogsled, dog sled, dog sleigh (score = 0.02570)
malamute, malemute, Alaskan malamute (score = 0.00802)
timber wolf, grey wolf, gray wolf, Canis lupus (score = 0.00114)
(9)其他
机器学习方法分类:
1)监督学习Supervised Learning: 也叫有教师学习,提供正确的数据,推测未知数据、分类回归
2)无监督学习Unsupervised Learning: 也叫无教师学习,没有正确的数据可以学习,实时数据处理、异常检测、clustering
3)强化学习Reinforcement Learning: 象棋、围棋等
*** 结果均为推荐结果,不是唯一结果。
主要应用:
图像识别(验证码、车牌号、各种物体、手写字符等)、声音识别、文字处理、搜索引擎、过滤垃圾邮件、推荐系统、预测系统、医疗诊断、机器人、侦测服务器攻击等等
自然语言处理NLP:
1)word2vec模型:
例如vector('queen') ~= vector('king') - vector('man') + vector('woman') (女王~=国王-男人+女人)
2)Seq2seq模型:
例如输入(hello) -> 输出 (你好)
视觉领域的开源数据集:
1)MNIST http://yann.lecun.com/exdb/mnist/
由Yann LeCun(杨乐坤)建立的手写数字库,相当于机器学习界的Hello World。
它有60000个训练样本集和10000个测试样本集,
2)ImageNet http://www.image-net.org/
由斯坦福Fei Fei(李飞飞)教授主导创建的图像分类数据集,计算机视觉领域的标准参照集。
有1400多万幅图片,涵盖2万多个类别
3)CIFAR http://www.cs.utoronto.ca/~kriz/cifar.html
CIFAR-10有10个分类,每个分类有已经标记的5000张训练图片和1000张测试图片
CIFAR-100有100个分类,每个分类变成了500张训练图片+100张测试图片
4)Oxford-IIIT Pet Dataset http://www.robots.ox.ac.uk/~vgg/data/pets/
和CIFAR-10类似,主要是动物系图像。目前有37个分类,每个分类有200多张图像。
5)MS COCO http://mscoco.org/
由微软赞助,除过对图像分类外还有对图像的语义文本描述。
有80个分类大约8万多张图片
6)Pascal VOC Challenge http://host.robots.ox.ac.uk/pascal/VOC/index.html
提供了一整套标准化的图像识别和分类的数据集,用于每年一次的挑战。
7)Kaggle https://www.kaggle.com/
数据建模和数据分析竞赛平台,已被Google收购。
常见文件:
protocol相关
.proto文件: 定义 protocol buffer message 类型,指定序列化的结构数据
.pb文件: 保存序列化之后的对象的二进制文件
.pbtxt文件: 保存序列化之后的对象的文本文件(可读,占用磁盘空间大)
.ckpt文件: checkpoint文件,saver.save(sess)的输出。等价于.ckpt-data。
.ckpt-meta文件: 包含了metagraph,比如计算图的结构,但不包含变量的值。
.ckpt-data文件和.ckpt-index文件: 包含了变量的值,但不包含计算图。
.pb文件: 保存了整个计算图及数据(meta + data),可加载继续使用。
.pbtxt文件: 文本化的pb文件
.record 文件和.tfrecords 文件: TFRecord文件,保存图像数据和标签的二进制文件,官方推荐的数据读取方式。
学习资源:
https://github.com/jtoy/awesome-tensorflow
https://github.com/BinRoot/TensorFlow-Book
https://github.com/astorfi/TensorFlow-World
https://github.com/nfmcclure/tensorflow_cookbook
https://github.com/pkmital/tensorflow_tutorials
https://github.com/aymericdamien/TensorFlow-Examples/
https://github.com/nlintz/TensorFlow-Tutorials
http://learningtensorflow.com/
http://www.deeplearningbook.org/
高级运用:
动态计算图 Tensorflow Fold https://github.com/tensorflow/fold
调试 tfdbg https://www.tensorflow.org/programmers_guide/debugger
部署 TensorFlow Serving https://tensorflow.github.io/serving/
分布式 tf.train.ClusterSpec https://www.tensorflow.org/deploy/distributed
框架(High-Level API)
TFLearn http://tflearn.org/
Keras https://keras.io/
Sonnet https://github.com/deepmind/sonnet
TF-Slim https://github.com/tensorflow/models/tree/master/inception/inception/slim
学习视频:
Andrew Ng的机器学习课程:
http://open.163.com/special/opencourse/machinelearning.html
Fei-Fei Li CS231n深度学习与计算机视觉:
http://study.163.com/course/introduction/1003223001.htm
Deep Learning by Google
https://www.udacity.com/course/deep-learning--ud730
- Tensorflow and deep learning - without a PhD by Martin Görner
https://www.youtube.com/watch?v=vq2nnJ4g6N0
- Tensorflow tutorials (Eng Sub) 神经网络教学教程 周莫烦
https://www.youtube.com/playlist?list=PLXO45tsB95cKI5AIlf5TxxFPzb-0zeVZ8
- Tensorflow tutorials (中文)
https://www.youtube.com/playlist?list=PLnUknG7KBFzqMSDZC1mnYMN0zMoRaH68r
- TensorFlow Tutorial 修炼指南
https://www.youtube.com/playlist?list=PLwY2GJhAPWRcZxxVFpNhhfivuW0kX15yG
- Machine Learning Recipes with Josh Gordon
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
- Deep Learning with Tensorflow
https://www.youtube.com/playlist?list=PL-XeOa5hMEYxNzHM7YLRjIwE1k3VQpqEh
参考:
https://www.oreilly.com/learning/hello-tensorflow
https://eatcodeplay.com/installing-tensorflow-with-python-3-on-ec2-gpu-instances-f9fa199eb3cc
https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning-engine
- 大小: 2.6 KB
- 大小: 7.8 KB
- 大小: 4.9 KB
- 大小: 26.7 KB
- 大小: 33 KB
分享到:
相关推荐
这个压缩包“零起点Tensorflow快速入门书中源码”是作者 ziwang 的新书《零起点Tensorflow快速入门》的配套源代码,旨在帮助初学者更直观地理解和实践 TensorFlow 的基本概念和操作。 首先,我们来看一下 `tf_demo...
【TensorFlow 2.x 入门教程:快速学习源码解析】 TensorFlow 是谷歌开发的一个开源机器学习框架,被广泛应用于深度学习、自然语言处理、计算机视觉等多个领域。本教程聚焦于TensorFlow 2.x版本,它引入了诸多改进,...
**TensorFlow:开启深度学习之旅** TensorFlow,由Google Brain团队开发,是一个强大的开源库,专为数值计算和大规模机器学习而设计。在斯坦福大学的课程中,TensorFlow被广泛用于教学,帮助学生理解并掌握这个平台...
这个入门教程和示例集合是为那些想要了解或深化 TensorFlow 技能的学习者准备的,无论你是初学者还是有一定经验的开发者,都能从中受益。该资源特别强调了对 TensorFlow v1 和 v2 的支持,让你能同时掌握这两个版本...
通过以上简单的步骤,你已经迈出了TensorFlow之旅的第一步。随着对库的深入理解和实践,你可以构建更复杂的模型,解决实际的机器学习问题。TensorFlow提供了丰富的文档和社区支持,使得学习和使用这个工具变得更为...
- Eager Execution 是 TensorFlow 2.0 的一个重要特性,它允许在运行时立即评估操作,提供更接近于 Python 的交互式体验。 - 学习如何在 Eager Execution 模式下编写、测试和调试代码,理解它与图形计算的区别。 ...
7.4 Eager Execution:即时执行模式,提供更直观的编程体验。 八、实战项目 8.1 数据预处理:清洗、标准化、归一化等。 8.2 构建模型:根据问题选择合适的网络架构,如 CNN、RNN、LSTM、BERT 等。 8.3 训练与评估:...
通过编写“First Program”(第一个程序),学习者可以快速体验TensorFlow的运行。 ### TensorFlow基础模型和应用 手册接着介绍了TensorFlow的几个基础模型: - **线性回归(Linear Regression)**:作为一个经典...
《TensorFlow,人工智能,微信小程序实战入门》是一套综合性的学习资源,旨在帮助初学者快速掌握这三个领域的基础知识和实际应用技巧。本教程结合了理论与实践,通过视频讲解和配套资料,让学习者能深入理解并动手...
在入门阶段,你需要理解张量(Tensor)、操作(Operation)和会话(Session)的基本概念,这些都是TensorFlow的核心元素。 实战代码可能涵盖了各种机器学习模型,例如神经网络、卷积神经网络(CNN)用于图像识别、...
**TensorFlow 2.x 入门指南** **一、TensorFlow 概述** TensorFlow 是一个开源的机器学习框架,由谷歌大脑团队开发并维护。它最初发布于2015年,现在已经发展到2.x版本,即TensorFlow 2.x。这个版本引入了许多重要...
书中的内容主要分为几个部分,旨在帮助读者从入门到精通,逐步掌握TensorFlow的核心技术和实践技巧。 首先,书中会介绍TensorFlow的基本概念,包括张量(Tensor)、运算符(Operations)和图(Graph),这些都是...
5. **社区支持**:TensorFlow.js拥有活跃的社区,提供了许多预训练模型和教程,帮助开发者快速入门和解决问题。 在这个前端项目中,"tfjs-master"可能代表项目的主分支或主要代码库,里面可能包含了以下文件结构: ...
通过统一的架构设计,解决了在线学习中的痛点,确保模型能够快速适应变化的业务需求,从而提高搜索推荐的准确性和用户体验。同时,自研的PS和优化器以及对Tensorflow的兼容性,使得京东能够构建出强大且灵活的机器...
本资料“Getting_Started_with_TensorFlow_-_Giancarlo_Zaccone.pdf”显然是一个关于TensorFlow入门的指南,由Giancarlo Zaccone撰写,旨在帮助初学者快速理解和掌握这个框架。 在深入探讨TensorFlow之前,让我们...
3. **易用性**:提供了诸如Keras这样的高级API,简化了模型构建和训练的过程,降低了入门门槛。 4. **集成支持**:与Google Cloud Platform以及其他云服务提供商紧密集成,方便用户在云端进行大规模的数据处理和模型...
### 香港科技大学Tensorflow三天速成课件(1)—— 入门人工智能与机器学习 #### 一、课程背景及目标 本课程由香港科技大学主办,旨在通过三天的时间帮助初学者快速入门人工智能(AI)与机器学习(ML)领域,并...
根据给定的文件标题、描述、标签以及部分...通过使用TensorFlow训练新闻分类模型,不仅可以提高信息处理的效率,还能增强用户体验。随着技术的不断进步,未来将有更多的应用场景可以利用这类模型来提升服务质量和效率。
3. **TensorFlow入门到进阶**: - TensorFlow基础知识:张量的概念、计算图、会话管理等。 - 深度学习网络构建:卷积神经网络(CNN)、循环神经网络(RNN)的设计与训练。 - 实战案例分析:图像识别、自然语言处理等...