一个优秀Java程序员,必须了解Java内存模型、GC工作原理,以及如何优化GC的性能、与GC进行有限的交互,有一些应用程序对性能要求较高,例如嵌入式系统、实时系统等,只有全面提升内存的管理效率,才能提高整个应用程序的性能。
本文将从JVM内存模型、GC工作原理,以及GC的几个关键问题进行探讨,从GC角度提高Java程序的性能。
一、Java内存模型
按照官方的说法:Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。
JVM主要管理两种类型内存:堆和非堆,堆内存(Heap Memory)是在 Java 虚拟机启动时创建,非堆内存(Non-heap Memory)是在JVM在堆之外的内存。
简单来说,堆是Java代码可及的内存,留给开发人员使用的;非堆是JVM留给自己用的,包含方法区、JVM内部处理或优化所需的内存(如 JIT Compiler,Just-in-time Compiler,即时编译后的代码缓存)、每个类结构(如运行时常数池、字段和方法数据)以及方法和构造方法的代码。
JVM 内存包含如下几个部分:
- 堆内存(Heap Memory): 存放Java对象
- 非堆内存(Non-Heap Memory): 存放类加载信息和其它meta-data
- 其它(Other): 存放JVM 自身代码等
在JVM启动时,就已经保留了固定的内存空间给Heap内存,这部分内存并不一定都会被JVM使用,但是可以确定的是这部分保留的内存不会被其他进程使用,这部分内存大小由-Xmx 参数指定。
而另一部分内存在JVM启动时就分配给JVM,作为JVM的初始Heap内存使用,这部分内存是由 -Xms 参数指定。
详细配置文件目录:eclipse/eclipse.ini
默认空余堆内存小于40%时,JVM 就会增大堆直到-Xmx 的最大限制,可以由 -XX:MinHeapFreeRatio 指定。
默认空余堆内存大于70%时,JVM 会减少堆直到-Xms的最小限制,可以由 -XX:MaxHeapFreeRatio 指定,详见
可以通过 -XX:MaxPermSize
设置Non-Heap大小,详细参见我的百度博客
二、Java内存分配
Java的内存管理实际上就是变量和对象的管理,其中包括对象的分配和释放。
JVM内存申请过程如下:
- JVM 会试图为相关Java对象在Eden中初始化一块内存区域
- 当Eden空间足够时,内存申请结束;否则到下一步
- JVM 试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收),释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区
- Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区
- 当OLD区空间不够时,JVM 会在OLD区进行完全的垃圾收集(0级)
- 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory”错误
三、GC基本原理
GC(Garbage Collection),是JAVA/.NET中的垃圾收集器。
Java是由C++发展来的,它摈弃了C++中一些繁琐容易出错的东西,引入了计数器的概念,其中有一条就是这个GC机制(C#借鉴了JAVA)
编 程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自 动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法。所以,Java的内存管理实际上就是对象的管理,其中包括对象的分配和释放。
对于程序员来说,分配对象使用new关键字;释放对象时,只要将对象所有引用赋值为null,让程序不能够再访问到这个对象,我们称该对象为"不可达的".GC将负责回收所有"不可达"对象的内存空间。
对 于GC来说,当程序员创建对象时,GC就开始监控这个对象的地址、大小以及使用情况。通常,GC采用有向图的方式记录和管理堆(heap)中的所有对象。 通过这种方式确定哪些对象是"可达的",哪些对象是"不可达的".当GC确定一些对象为"不可达"时,GC就有责任回收这些内存空间。但是,为了保证 GC能够在不同平台实现的问题,Java规范对GC的很多行为都没有进行严格的规定。例如,对于采用什么类型的回收算法、什么时候进行回收等重要问题都没 有明确的规定。因此,不同的JVM的实现者往往有不同的实现算法。这也给Java程序员的开发带来行多不确定性。本文研究了几个与GC工作相关的问题,努 力减少这种不确定性给Java程序带来的负面影响。
四、GC分代划分
JVM内存模型中Heap区分两大块,一块是 Young Generation,另一块是Old Generation
1) 在Young Generation中,有一个叫Eden Space的空间,主要是用来存放新生的对象,还有两个Survivor Spaces(from,to),它们的大小总是一样,它们用来存放每次垃圾回收后存活下来的对象。
2) 在Old Generation中,主要存放应用程序中生命周期长的内存对象。
3) 在Young Generation块中,垃圾回收一般用Copying的算法,速度快。每次GC的时候,存活下来的对象首先由Eden拷贝到某个 SurvivorSpace, 当Survivor Space空间满了后, 剩下的live对象就被直接拷贝到OldGeneration中去。因此,每次GC后,Eden内存块会被清空。
4) 在Old Generation块中,垃圾回收一般用mark-compact的算法,速度慢些,但减少内存要求。
5) 垃圾回收分多级,0级为全部(Full)的垃圾回收,会回收OLD段中的垃圾;1级或以上为部分垃圾回收,只会回收Young中的垃圾,内存溢出通常发生于OLD段或Perm段垃圾回收后,仍然无内存空间容纳新的Java对象的情况。
五、增量式GC
增量式GC(Incremental GC),是GC在JVM中通常是由一个或一组进程来实现的,它本身也和用户程序一样占用heap空间,运行时也占用CPU。
当 GC进程运行时,应用程序停止运行。因此,当GC运行时间较长时,用户能够感到Java程序的停顿,另外一方面,如果GC运行时间太短,则可能对象回收率 太低,这意味着还有很多应该回收的对象没有被回收,仍然占用大量内存。因此,在设计GC的时候,就必须在停顿时间和回收率之间进行权衡。一个好的GC实现 允许用户定义自己所需要的设置,例如有些内存有限的设备,对内存的使用量非常敏感,希望GC能够准确的回收内存,它并不在意程序速度的快慢。另外一些实时 网络游戏,就不能够允许程序有长时间的中断。
增量式GC就是通过一定的回收算法,把一个长时间的中断,划分为很多个小的中断,通过这种方式减少GC对用户程序的影响。虽然,增量式GC在整体性能上可能不如普通GC的效率高,但是它能够减少程序的最长停顿时间。
Sun JDK提供的HotSpot JVM就能支持增量式GC。HotSpot JVM缺省GC方式为不使用增量GC,为了启动增量GC,我们必须在运行Java程序时增加-Xincgc的参数。
HotSpot JVM增量式GC的实现是采用Train GC算法,它的基本想法就是:将堆中的所有对象按照创建和使用情况进行分组(分层),将使用频繁高和具有相关性的对象放在一队中,随着程序的运行,不断对 组进行调整。当GC运行时,它总是先回收最老的(最近很少访问的)的对象,如果整组都为可回收对象,GC将整组回收。这样,每次GC运行只回收一定比例的 不可达对象,保证程序的顺畅运行。
六、详解函数finalize
finalize 是位于Object类的一个方法,详见我的开源项目:src-jdk1.7.0_02
protectedvoid finalize()throwsThrowable{}
该方法的访问修饰符为protected,由于所有类为Object的子类,因此用户类很容易访问到这个方法。
由 于,finalize函数没有自动实现链式调用,我们必须手动的实现,因此finalize函数的最后一个语句通常是 super.finalize()。通过这种方式,我们可以实现从下到上实现finalize的调用,即先释放自己的资源,然后再释放父类的资源。根据 Java语言规范,JVM保证调用finalize函数之前,这个对象是不可达的,但是JVM不保证这个函数一定会被调用。另外,规范还保证 finalize函数最多运行一次。
很多Java初学者会认为这个方法类似与C++中的析构函数,将很多对象、资源的释放都放在这一函数里面。其实,这不是一种很好的方式,原因有三:其一、GC为了能够支持finalize函数,要对覆盖这个函数的对象作很多附加的工作。
其二、在finalize运行完成之后,该对象可能变成可达的,GC还要再检查一次该对象是否是可达的。因此,使用 finalize会降低GC的运行性能。
其三、由于GC调用finalize的时间是不确定的,因此通过这种方式释放资源也是不确定的。
通 常,finalize用于一些不容易控制、并且非常重要资源的释放,例如一些I/O的操作,数据的连接。这些资源的释放对整个应用程序是非常关键的。在这 种情况下,程序员应该以通过程序本身管理(包括释放)这些资源为主,以finalize函数释放资源方式为辅,形成一种双保险的管理机制,而不应该仅仅依 靠finalize来释放资源。
下面给出一个例子说明,finalize函数被调用以后,仍然可能是可达的,同时也可说明一个对象的finalize只可能运行一次。
- class MyObject {
- Test main; // 记录Test对象,在finalize中时用于恢复可达性
- public MyObject(Test t) {
- main = t; // 保存Test 对象
- }
- protected void finalize() {
- main.ref = this; // 恢复本对象,让本对象可达
- System.out.println("This is finalize"); // 用于测试finalize只运行一次
- }
- }
- class Test {
- MyObject ref;
- public static void main(String[] args) {
- Test test = new Test();
- test.ref = new MyObject(test);
- test.ref = null; // MyObject对象为不可达对象,finalize将被调用
- System.gc();
- if (test.ref != null)
- System.out.println("My Object还活着");
- }
- }
运行结果:
This is finalize
My Object还活着
此例子中需要注意,虽然MyObject对象在finalize中变成可达对象,但是下次回收时候,finalize却不再被调用,因为finalize函数最多只调用一次。
七、GC程序交互
程序如何与GC进行交互呢? Java2增强了内存管理功能,增加了一个java.lang.ref包,详见我的开源项目:src-jdk1.7.0_02
其中定义了三种引用类。这三种引用类分别为:SoftReference、 WeakReference、 PhantomReference
通过使用这些引用类,程序员可以在一定程度与GC进行交互,以便改善GC的工作效率,这些引用类的引用强度介于可达对象和不可达对象之间。
创 建一个引用对象也非常容易,例如:如果你需要创建一个Soft Reference对象,那么首先创建一个对象,并采用普通引用方式(可达对象);然后再创建一个SoftReference引用该对象;最后将普通引用 设置为null。通过这种方式,这个对象就只有一个Soft Reference引用。同时,我们称这个对象为Soft Reference 对象。
Soft Reference的主要特点是据有较强的引用功能。只有当内存不够的时候,才进行回收这类内存,因此在内存足够的时候,它们通常不被回收。另外,这些引 用对象还能保证在Java抛出OutOfMemory 异常之前,被设置为null。它可以用于实现一些常用图片的缓存,实现Cache的功能,保证最大限度的使用内存而不引起OutOfMemory。以下给 出这种引用类型的使用伪代码:
- // 申请一个图像对象
- Image image=new Image(); // 创建Image对象
- …
- // 使用 image
- …
- // 使用完了image,将它设置为soft 引用类型,并且释放强引用;
- SoftReference sr=new SoftReference(image);
- image=null;
- …
- // 下次使用时
- if (sr!=null)
- image=sr.get();
- else{
- image=new Image(); //由于GC由于低内存,已释放image,因此需要重新装载;
- sr=new SoftReference(image);
- }
Weak 引用对象与Soft引用对象的最大不同就在于:GC在进行回收时,需要通过算法检查是否回收Soft引用对象,而对于Weak引用对象,GC总是进行回 收。Weak引用对象更容易、更快被GC回收。虽然,GC在运行时一定回收Weak对象,但是复杂关系的Weak对象群常常需要好几次GC的运行才能完 成。Weak引用对象常常用于Map结构中,引用数据量较大的对象,一旦该对象的强引用为null时,GC能够快速地回收该对象空间。
Phantom 引用的用途较少,主要用于辅助finalize函数的使用。Phantom对象指一些对象,它们执行完了finalize函数,并为不可达对象,但是它们 还没有被GC回收。这种对象可以辅助finalize进行一些后期的回收工作,我们通过覆盖Reference的clear()方法,增强资源回收机制的 灵活性。
八、Java编程建议
根据GC的工作原理,我们可以通过一些技巧和方式,让GC运行更加有效率,更加符合应用程序的要求。一些关于程序设计的几点建议:
1) 最基本的建议就是尽早释放无用对象的引用。大多数程序员在使用临时变量的时候,都是让引用变量在退出活动域(scope)后,自动设置为 null.我们在使用这种方式时候,必须特别注意一些复杂的对象图,例如数组,队列,树,图等,这些对象之间有相互引用关系较为复杂。对于这类对象,GC 回收它们一般效率较低。如果程序允许,尽早将不用的引用对象赋为null,这样可以加速GC的工作。
2)尽量少用finalize函数。finalize函数是Java提供给程序员一个释放对象或资源的机会。但是,它会加大GC的工作量,因此尽量少采用finalize方式回收资源。
3)如果需要使用经常使用的图片,可以使用soft应用类型。它可以尽可能将图片保存在内存中,供程序调用,而不引起OutOfMemory.
4)注意集合数据类型,包括数组,树,图,链表等数据结构,这些数据结构对GC来说,回收更为复杂。另外,注意一些全局的变量,以及一些静态变量。这些变量往往容易引起悬挂对象(dangling reference),造成内存浪费。
5)当程序有一定的等待时间,程序员可以手动执行System.gc(),通知GC运行,但是Java语言规范并不保证GC一定会执行。使用增量式GC可以缩短Java程序的暂停时间。
参考推荐:
Android 智能指针原理(推荐)
Java系列教程(推荐)
Java垃圾回收原理(360doc)
Java内存模型及GC原理(图解)
Java的内存结构和垃圾收集(图解)
JVM 优点与缺点的深入分析 [草稿]
相关推荐
Java内存模型与垃圾收集(Garbage Collection, GC)密切相关。GC负责自动管理堆内存,回收不再使用的对象所占的空间。Java提供了多种垃圾收集器,如Serial、Parallel、CMS、G1等,它们各有优缺点,适用于不同的应用...
### JAVA内存设置原理详解 在深入探讨JAVA内存设置原理之前,我们先理解一下JVM(Java虚拟机)的内存管理机制。JVM是JAVA运行时环境的核心,它负责执行JAVA字节码,同时管理程序运行时的内存分配与回收。JVM的内存...
### JVM内存模型 #### 堆内存(Heap) 堆是JVM管理的最大块内存区域,用于存储对象实例。堆被划分为新生代和老年代,其中新生代又细分为Eden区和两个Survivor区(S0和S1)。对象首先在Eden区创建,经过几次GC后会被移动...
首先,我们要了解Java内存模型。Java虚拟机(JVM)中有三个主要的内存区域:堆内存(Heap)、栈内存(Stack)和方法区(Method Area)。其中,堆内存是Java对象的主要存储场所,栈内存主要存储方法调用时的局部变量...
此外,Java内存模型(JMM)也非常重要,它定义了线程之间的共享变量如何交互,以及在并发环境下如何保证内存可见性和一致性。熟悉 volatile、synchronized 和 final 关键字的作用,可以帮助我们编写出正确处理并发的...
Java内存模型,也称为JVM内存结构,主要包括堆内存、栈内存、方法区、程序计数器和本地方法栈五个部分。理解这些区域的工作原理对于进行性能调优至关重要。 - **堆内存**:存储所有类实例和数组,是所有线程共享...
Java内存管理是Java核心技术的重要组成部分,对于每个开发者来说,理解其工作原理都是十分必要的。这一主题既实用又有趣。以下是对Java内存管理的精彩概述,主要基于Sun Hotspot JVM,但请注意,不同JVM可能有不同的...
Java 实现内存动态分配主要涉及Java内存模型以及内存管理机制,包括堆内存和栈内存的分配,以及垃圾回收等概念。下面将详细解释这些知识点。 1. **Java内存模型** Java程序运行时,内存分为堆内存(Heap)和栈内存...
Java内存泄露检测是Java...总之,Java内存泄露检测是一个涉及编程规范、内存管理原理、内存泄露类型以及检测方法的综合问题。通过深入理解和实践,开发者可以有效地防止和解决内存泄露问题,提高程序的健壮性和性能。
在这个主题中,我们将深入探讨Java内存的几个关键方面,包括Java内存模型、垃圾收集机制、内存泄漏以及优化策略。以下是对这些知识点的详细阐述: 1. **Java内存模型(JMM)**: Java内存模型定义了线程之间如何...
这份文档详细阐述了JVM性能调优的关键概念,包括JVM内存模型、垃圾回收(Garbage Collection, GC)的原理以及各种垃圾回收算法,这些都是JAVA程序员在日常工作中需要理解和掌握的核心技术。 首先,JVM内存模型是...
Java虚拟机(JVM)是Java程序运行的基础,它为Java应用程序提供了运行环境。...总的来说,理解JVM内存分配和GC原理,以及如何选择和配置垃圾收集器,对于提升Java应用的性能和稳定性有着至关重要的作用。
Java内存模型(JMM)规定了线程对共享变量的可见性和有序性,它通过主内存和工作内存的概念来实现多线程之间的协作。 3. JVM调优:JVM调优通常指对JVM进行配置,优化性能以应对特定的应用需求。常见的调优手段包括...
Java内存模型分为堆内存和栈内存。堆内存是所有对象实例的存储区域,而栈内存则保存方法调用时的局部变量。栈内存的分配和回收非常快,但大小有限;堆内存分配较为复杂,但可以动态调整大小,适用于存储大型对象。 ...
Java性能调优主要聚焦在JVM的优化,其中包括内存模型的理解、垃圾收集(GC)机制以及如何处理常见的Out of Memory (OOM)异常。首先,我们要理解JVM的内存模型,这是进行性能调优的基础。 JVM内存模型由堆、栈、方法...
GC(垃圾回收)与内存模型紧密相关,因为GC主要处理堆内存的管理。 4. **GC垃圾回收**: 垃圾回收是JVM自动管理内存的关键部分,主要目的是回收不再使用的对象所占用的内存。GC有多种算法,如标记-清除、复制、...
- 即使Ergonomics极大地提升了开箱即用的应用程序体验,但最优配置通常需要更多关注Java内存区域的大小。 - Java应用程序的最大堆大小受以下三个因素限制: - 进程数据模型(32位或64位)及操作系统限制 - 系统...
《揭秘Java虚拟机-JVM设计原理与实现》这本书深入探讨了Java虚拟机(JVM)的工作原理及其在Java编程中的核心地位。Java虚拟机是Java平台的核心组成部分,它负责执行字节码,为开发者提供了跨平台的运行环境。以下是...
### JVM原理、内存模型、性能调优 ...综上所述,理解JVM的基本原理、掌握内存模型和学会合理的性能调优策略对于开发高效稳定的Java应用程序至关重要。希望本教程能够帮助大家更好地理解和掌握JVM相关的知识和技术。
总结来说,Java垃圾收集专题深入探讨了Java内存管理的原理以及常见的内存问题。在这一领域,开发者需要理解垃圾收集的基本概念、分代内存管理的机制、不同垃圾收集算法的原理和适用场景,以及如何使用工具来诊断和...