太多选择——如何挑选合适的大数据或Hadoop平台?
今年,大数据在很多公司都成为相关话题。虽然没有一个标准的定义来解释何为 “大数据”,但在处理大数据上,Hadoop已经成为事实上的标准。IBM、Oracle、SAP、甚至Microsoft等几乎所有的大型软件提供商都采用了Hadoop。然而,当你已经决定要使用Hadoop来处理大数据时,首先碰到的问题就是如何开始以及选择哪一种产品。你有多种选择来安装Hadoop的一个版本并实现大数据处理。本文讨论了不同的选择,并推荐了每种选择的适用场合。
Hadoop平台的多种选择
下图展示了Hadoop平台的多种选择。你可以只安装Apache 发布版本,或从不同提供商所提供的几个发行版本中选择一个,或决定使用某个大数据套件。每个发行版本都包含有Apache Hadoop,而几乎每个大数据套件都包含或使用了一个发行版本,理解这一点是很重要的。
下面我们首先从Apache Hadoop开始来好好看看每种选择。
Apache Hadoop
Apache Hadoop项目的目前版本(2.0版)含有以下模块:
- Hadoop通用模块:支持其他Hadoop模块的通用工具集。
- Hadoop分布式文件系统(HDFS):支持对应用数据高吞吐量访问的分布式文件系统。
- Hadoop YARN:用于作业调度和集群资源管理的框架。
- Hadoop MapReduce:基于YARN的大数据并行处理系统。
在本地系统上独立安装Apache Hadoop是非常容易的(只需解压缩并设置某些环境变量,然后就可以开始使用了)。但是这只合适于入门和做一些基本的教程学习。
如果你想在一个或多个“真正的节点”上安装Apache Hadoop,那就复杂多了。
问题1:复杂的集群设置
你可以使用伪分布式模式在单个节点上模拟多节点的安装。你可以在单台服务器上模拟在多台不同服务器上的安装。就算是在该模式下,你也要做大量的配置工作。如果你想设置一个由几个节点组成的集群,毫无疑问,该过程就变得更为复杂了。要是你是一个新手管理员,那么你就不得不在用户权限、访问权限等诸如此类的问题中痛苦挣扎。
问题2: Hadoop生态系统的使用
在Apache中,所有项目之间都是相互独立的。这是很好的一点!不过Hadoop生态系统除了包含Hadoop外,还包含了很多其他Apache项目:
- Pig:分析大数据集的一个平台,该平台由一种表达数据分析程序的高级语言和对这些程序进行评估的基础设施一起组成。
- Hive:用于Hadoop的一个数据仓库系统,它提供了类似于SQL的查询语言,通过使用该语言,可以方便地进行数据汇总,特定查询以及分析存放在Hadoop兼容文件系统中的大数据。
- Hbase:一种分布的、可伸缩的、大数据储存库,支持随机、实时读/写访问。
- Sqoop:为高效传输批量数据而设计的一种工具,其用于Apache Hadoop和结构化数据储存库如关系数据库之间的数据传输。
- Flume:一种分布式的、可靠的、可用的服务,其用于高效地搜集、汇总、移动大量日志数据。
- ZooKeeper:一种集中服务,其用于维护配置信息,命名,提供分布式同步,以及提供分组服务。
- 还有其他一些项目。
你需要安装这些项目,并手动地将它们集成到Hadoop中。
你需要自己留意不同的版本和发布版本。不幸的是,不是所有的版本都能在一起完美地运行起来。你要自己比较发布说明并找出解决之道。Hadoop提供了众多的不同版本、分支、特性等等。跟你从其他项目了解的1.0、1.1、2.0这些版本号不同,Hadoop的版本可远没这么简单。如果你想更进一步了解关于“Hadoop版本地狱”的细节,请阅读“大象的家谱(Genealogy of elephants)”一文。
问题3:商业支持
Apache Hadoop只是一个开源项目。这当然有很多益处。你可以访问和更改源码。实际上有些公司使用并扩展了基础代码,还添加了新的特性。很多讨论、文章、博客和邮件列表中都提供了大量信息。
然而,真正的问题是如何获取像Apache Hadoop这样的开源项目的商业支持。公司通常只是为自己的产品提供支持,而不会为开源项目提供支持(不光是Hadoop项目,所有开源项目都面临这样的问题)。
何时使用Apache Hadoop
由于在本地系统上,只需10分钟左右就可完成其独立安装,所以Apache Hadoop很适合于第一次尝试。你可以试试WordCount示例(这是Hadoop的“hello world”示例),并浏览部分MapReduce的Java代码 。
如果你并不想使用一个“真正的”Hadoop发行版本(请看下一节)的话,那么选择Apache Hadoop也是正确的。然而,我没有理由不去使用Hadoop的一个发行版本——因为它们也有免费的、非商业版。
所以,对于真正的Hadoop项目来说,我强烈推荐使用一个Hadoop的发行版本来代替Apache Hadoop。下一节将会说明这种选择的优点。
Hadoop发行版本
Hadoop发行版本解决了在上一节中所提到的问题。发行版本提供商的商业模型百分之百地依赖于自己的发行版本。他们提供打包、工具和商业支持。而这些不仅极大地简化了开发,而且也极大地简化了操作。
Hadoop发行版本将Hadoop生态系统所包含的不同项目打包在一起。这就确保了所有使用到的版本都可以顺当地在一起工作。发行版本会定期发布,它包含了不同项目的版本更新。
发行版本的提供商在打包之上还提供了用于部署、管理和监控Hadoop集群的图形化工具。采用这种方式,可以更容易地设置、管理和监控复杂集群。节省了大量工作。
正如上节所提到的,获取普通Apache Hadoop项目的商业支持是很艰难的,而提供商却为自己的Hadoop发行版本提供了商业支持。
Hadoop发行版本提供商
目前,除了Apache Hadoop外, HortonWorks、Cloudera和MapR三驾马车在发布版本上差不多齐头并进。虽然,在此期间也出现了其他的Hadoop发行版本。比如EMC公司的Pivotal HD、IBM的InfoSphere BigInsights。通过Amazon Elastic MapReduce(EMR),Amazon甚至在其云上提供了一个托管的、预配置的解决方案。
虽然很多别的软件提供商没有开发自己的Hadoop发行版本,但它们和某一个发行版本提供商相互合作。举例来说,Microsoft和Hortonworks相互合作,特别是合作将Apache Hadoop引入到Windows Server操作系统和Windows Azure云服务中。另外一个例子是,Oracle通过将自己的软硬件与Cloudera的Hadoop发行版本结合到一起,提供一个大数据应用产品。而像SAP、Talend这样的软件提供商则同时支持几个不同的发行版本。
如何选择合适的Hadoop发行版本?
本文不会评估各个Hadoop的发行版本。然而,下面会简短地介绍下主要的发行版本提供商。在不同的发行版本之间一般只有一些细微的差别,而提供商则将这些差别视为秘诀和自己产品的与众不同之处。下面的列表解释了这些差别:
- Cloudera:最成型的发行版本,拥有最多的部署案例。提供强大的部署、管理和监控工具。Cloudera开发并贡献了可实时处理大数据的Impala项目。
- Hortonworks:不拥有任何私有(非开源)修改地使用了100%开源Apache Hadoop的唯一提供商。Hortonworks是第一家使用了Apache HCatalog的元数据服务特性的提供商。并且,它们的Stinger开创性地极大地优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Windows Server和Windows Azure在内的Microsft Windows平台上本地运行。
- MapR:与竞争者相比,它使用了一些不同的概念,特别是为了获取更好的性能和易用性而支持本地Unix文件系统而不是HDFS(使用非开源的组件)。可以使用本地Unix命令来代替Hadoop命令。除此之外,MapR还凭借诸如快照、镜像或有状态的故障恢复之类的高可用性特性来与其他竞争者相区别。该公司也领导着Apache Drill项目,本项目是Google的Dremel的开源项目的重新实现,目的是在Hadoop数据上执行类似SQL的查询以提供实时处理。
- Amazon Elastic Map Reduce(EMR):区别于其他提供商的是,这是一个托管的解决方案,其运行在由Amazon Elastic Compute Cloud(Amazon EC2)和Amzon Simple Strorage Service(Amzon S3)组成的网络规模的基础设施之上。除了Amazon的发行版本之外,你也可以在EMR上使用MapR。临时集群是主要的使用情形。如果你需要一次性的或不常见的大数据处理,EMR可能会为你节省大笔开支。然而,这也存在不利之处。其只包含了Hadoop生态系统中Pig和Hive项目,在默认情况下不包含其他很多项目。并且,EMR是高度优化成与S3中的数据一起工作的,这种方式会有较高的延时并且不会定位位于你的计算节点上的数据。所以处于EMR上的文件IO相比于你自己的Hadoop集群或你的私有EC2集群来说会慢很多,并有更大的延时。
上面的发行版本都能灵活地单独使用或是与不同的大数据套件组合使用。而这期间出现的一些其它的发行版本则不够灵活,会将你绑定至特定的软件栈和(或)硬件栈。比如EMC的Pivotal HD原生地融合了Greenplum的分析数据库,目的是为了在Hadoop,或Intel的Apache Hadoop发行版本之上提供实时SQL查询和卓越的性能,Intel的Apache Hadoop发行版本为固态驱动器进行了优化,这是其他Hadoop公司目前还没有的做法。
所以,如果你的企业已经有了特定的供应方案栈,则一定要核查它支持哪个Hadoop发行版本。比如,如果你使用了Greeplum数据库,那么Pivotal就可能是一个完美的选择,而在其他情况下,可能更适合采取更加灵活的解决方案。例如,如果你已经使用了Talend ESB,并且你想使用TalenD Big Data来启动你的大数据项目,那么你可以选择你心仪的Hadoop发行版本,因为Talend并不依赖于Hadoop发行版本的某个特定提供商。
为了做出正确的选择,请了解各个发行版本的概念并进行试用。请查证所提供的工具并分析企业版加上商业支持的总费用。在这之后,你就可以决定哪个发行版本是适合自己的。
何时使用Hadoop发行版本?
由于发行版本具有打包、工具和商业支持这些优点,所以在绝大多数使用情形下都应使用Hadoop的发行版本。使用普通的(原文为plan,应为plain)Apache Hadoop发布版本并在此基础之上构建自己的发行版本的情况是极少见的。你会要自己测试打包,构建自己的工具,并自己动手写补丁。其他一些人已经遇到了你将会遇到的同样问题。所以,请确信你有很好的理由不使用Hadoop发行版本。
然而,就算是Hadoop发行版本也需要付出很大的努力。你还是需要为自己的MapReduce作业编写大量代码,并将你所有的不同数据源集成到Hadoop中。而这就是大数据套件的切入点。
大数据套件
你可以在Apache Hadoop或Hadoop发行版本之上使用一个大数据套件。大数据套件通常支持多个不同的Hadoop发行版本。然而,某些提供商实现了自己的Hadoop解决方案。无论哪种方式,大数据套件为了处理大数据而在发行版本上增加了几个更进一步的特性:
- 工具:通常,大数据套件是建立像Eclipse之类的IDE之上。附加插件方便了大数据应用的开发。你可以在自己熟悉的开发环境之内创建、构建并部署大数据服务。
- 建模:Apache Hadoop或Hadoop发行版本为Hadoop集群提供了基础设施。然而,你仍然要写一大堆很复杂的代码来构建自己的MapReduce程序。你可以使用普通的Java来编写这些代码,或者你也可以那些已经优化好的语言,比如PigLatin或Hive查询语言(HQL),它们生成MapReduce代码。大数据套件提供了图形化的工具来为你的大数据服务进行建模。所有需要的代码都是自动生成的。你只用配置你的作业(即定义某些参数)。这样实现大数据作业变得更容易和更有效率。
- 代码生成:生成所有的代码。你不用编写、调试、分析和优化你的MapReduce代码。
- 调度:需要调度和监控大数据作业的执行。你无需为了调度而编写cron作业或是其他代码。你可以很容易地使用大数据套件来定义和管理执行计划。
- 集成:Hadoop需要集成所有不同类技术和产品的数据。除了文件和SQL数据库之外,你还要集成NoSQL数据库、诸如Twitter或Facebook这样的社交媒体、来自消息中间件的消息、或者来自类似于Salesforce或SAP的B2B产品的数据。通过提供从不同接口到Hadoop和后端的众多连接器,大数据套件为集成提供了很多帮助。你不用手工编写连接代码,你只需使用图形化的工具来集成并映射所有这些数据。集成能力通常也具有数据质量特性,比如数据清洗以提高导入数据的质量。
大数据套件提供商
大数据套件的数目在持续增长。你可以在几个开源和专有提供商之间选择。像IBM、Oracle、Microsoft等这样的大部分大软件提供商将某一类的大数据套件集成到自己的软件产品组合中。而绝大多数的这些厂商仅只支持某一个Hadoop发行版本,要么是自己的,要么和某个Hadoop发行版本提供商合作。
从另外一方面来看,还有专注于数据处理的提供商可供选择。它们提供的产品可用于数据集成、数据质量、企业服务总线、业务流程管理和更进一步的集成组件。既有像Informatica这样的专有提供商,也有Talend或Pentaho这样的开源提供商。某些提供商不只支持某一个Hadoop发行版本,而是同时支持很多的。比如,就在撰写本文的时刻,Talend就可以和Apache Hadoop、Cloudera、Hortonworks、MapR、Amazon Elastic MapReduce或某个定制的自创发行版本(如使用EMC的Pivotal HD)一起使用。
如何选择合适的大数据套件?
本文不会评估各个大数据套件。当你选择大数据套件时,应考虑几个方面。下面这些应该可以帮助你为自己的大数据问题作出合适的抉择:
- 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。
- 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展?是否存在一个含有文档、论坛、博客和交流会的大社区?
- 特性:是否支持所有需要的特性?Hadoop的发行版本(如果你已经使用了某一个)?你想要使用的Hadoop生态系统的所有部分?你想要集成的所有接口、技术、产品?请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性?
- 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”),也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。
决策树:框架vs.发行版本vs.套件
现在,你了解了Hadoop不同选择之间的差异。最后, 让我们总结并讨论选择Apache Hadoop框架、Hadoop发行版本或大数据套件的场合。
下面的“决策树”将帮助你选择合适的一种:
Apache:
- 学习并理解底层细节?
- 专家?自己选择和配置?
发行版本:
- 容易的设置?
- 初学(新手)?
- 部署工具?
- 需要商业支持?
大数据套件:
- 不同数据源集成?
- 需要商业支持?
- 代码生成?
- 大数据作业的图形化调度?
- 实现大数据处理(集成、操作、分析)?
结论
Hadoop安装有好几种选择。你可以只使用Apache Hadoop项目并从Hadoop生态系统中创建自己的发行版本。像Cloudera、Hortonworks或MapR这样的Hadoop发行版本提供商为了减少用户需要付出的工作,在Apache Hadoop之上添加了如工具、商业支持等特性。在Hadoop发行版本之上,为了使用如建模、代码生成、大数据作业调度、所有不同种类的数据源集成等附加特性,你可以使用一个大数据套件。一定要评估不同的选择来为自己的大数据项目做出正确的决策。
相关推荐
CDH是业界广泛采用的企业级Hadoop发行版,它不仅集成了Hadoop的核心组件,还包含了其他的开源大数据项目,如Hive、Pig、Spark、Impala等,提供了一整套大数据处理和分析解决方案。CDH 5.16.2是CDH系列的一个重要更新...
CentOS是基于Red Hat Enterprise Linux(RHEL)构建的免费企业级操作系统,与RHEL几乎完全兼容,因此在很多企业级大数据项目中常用。 软件版本列表包括了搭建Hadoop生态系统所需的关键组件版本,例如JDK 1.7.0_67、...
### 高级软件人才培训专家-Hadoop课程资料-1-第一章 - Hello大数据&分布式 #### 知识点概览 1. **数据的概念与价值** - 数据的基本定义及其在现代社会中的重要性。 - 数据如何影响现实生活的具体案例。 2. **...
5. "王家林的云计算分布式大数据Hadoop企业级开发动手实战.docx"和"王家林的云计算分布式大数据Hadoop入门经典.docx":这些可能是更高级的教程,涉及到Hadoop在企业环境中的应用,包括数据处理的最佳实践、性能优化...
在本课程"云计算分布式大数据Hadoop实战之路--从零开始(第1-10讲)"中,我们将深入探讨云计算和分布式计算领域的核心概念,特别是针对大数据处理的Hadoop框架。这一系列讲座将引导初学者逐步理解并掌握如何在云环境...
【企业级大数据平台CDH详细搭建过程】 CDH(Cloudera Distribution Including Apache Hadoop)是由Cloudera公司提供的一款企业级大数据处理平台,它包含了多个开源Apache项目的集成,如Hadoop、Hive、HBase、Spark...
安全性设置是企业级部署必不可少的部分,可能涉及到Kerberos认证、访问控制列表(ACLs)以及防火墙策略。 最后,集群搭建完成后,需要进行一系列的测试,如HDFS的读写测试、MapReduce任务运行测试等,以验证集群的...
### 大数据之路选择Hadoop还是MaxCompute? #### 一、Hadoop与MaxCompute概述 ##### 1.1 Hadoop介绍与发展历程 Hadoop是由Apache软件基金会开发的一个开源分布式计算平台,采用Java语言编写,旨在支持大规模数据...
CDH是一个开源的大数据平台,由Cloudera提供,它集成了Hadoop及相关项目,使得在企业环境中部署和使用Hadoop更加简单。搭建CDH5后,自带的example也已经能够运行,为编写自定义的MapReduce作业打下基础。 编写...
在当前数字化时代,企业对数据存储和管理的需求日益增长,基于Hadoop、SpringCloud和Vue技术栈的企业级网盘系统成为了解决这一问题的有效方案。本文将深入探讨这些技术如何结合,以构建一个高效、可扩展且用户友好的...
Hadoop作为大数据处理领域的重要工具之一,其集群的搭建对于企业级数据处理至关重要。本文将详细介绍Hadoop集群的搭建步骤及其注意事项,帮助读者顺利完成Hadoop集群的部署。 #### 一、硬件准备 首先,确定硬件...
本方案旨在搭建一个基于Hadoop的云计算平台,以支持电网企业在营销服务领域的深度数据分析。 1. 平台概述 平台主要由4个物理计算机节点组成,其中一个作为master节点,负责管理NameNode(HDFS的命名节点)和...
《构建企业级网盘分布式系统:SpringBoot+Hadoop+Vue技术栈解析》 在当前数字化时代,企业级网盘分布式系统已经成为企业数据管理和共享的重要工具。本项目以"基于SpringBoot+Hadoop+Vue开发的企业级网盘分布式系统...
- **CentOS**: 虽然标题中提到的是Windows,但CentOS是一个常见的Linux发行版,常用于搭建Hadoop集群,因为Linux环境通常更适合大规模分布式计算。 7. **安装与配置**: 在Windows上使用Hadoop 2.6.3,用户需要配置...
从Eclipse官网下载适合Windows 7的Eclipse IDE版本,如Java EE版本,因为它包含了对Web和企业级应用开发的支持。 3. **安装Hadoop**: 下载Hadoop的稳定版本,解压到一个合适的目录,并配置`HADOOP_HOME`环境变量...
理解如何在Hadoop上搭建实时流处理系统,对于实时业务至关重要。 6. **安全性与权限管理**:在企业环境中,Hadoop的安全性和权限管理变得尤为重要。Kerberos认证、HDFS的访问控制列表(ACLs)和Hadoop的Secure Mode...