之前已经写过通过重绘整个背景的方式,实现物体移动。今天要讲的是,如何通过移动widget,view等控件,实现部分重绘。结合之前发Droiddraw工具,使用AbsoluteLayout,可以随意放置控件在任何位置。
package com.sky;
import android.app.Activity;
import android.os.Bundle;
import android.view.KeyEvent;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AbsoluteLayout;
import android.widget.Button;
@SuppressWarnings("deprecation")
public class AbosoluteMove extends Activity implements OnClickListener
{
/** Called when the activity is first created. */
public Button button1;
public Button button2;
public Button button3;
public Button button4;
Button tmp;//临时保存,选择的BUTTON
int x;
int y;
int flag;//用于标志选择哪个BUTTON
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
button1=(Button) findViewById(R.id.widget27);
button2=(Button) findViewById(R.id.widget28);
button3=(Button) findViewById(R.id.widget29);
button4=(Button) findViewById(R.id.widget30);
button1.setOnClickListener(this);
button2.setOnClickListener(this);
button3.setOnClickListener(this);
button4.setOnClickListener(this);
}
@Override
public void onClick(View v)
{
// TODO Auto-generated method stub
switch(v.getId())
{
case R.id.widget27:
flag=R.id.widget27;
setTitle("button1");
break;
case R.id.widget28:
flag=R.id.widget28;
setTitle("button2");
break;
case R.id.widget29:
flag=R.id.widget29;
setTitle("button3");
break;
case R.id.widget30:
flag=R.id.widget30;
setTitle("button4");
break;
}
}
@Override
public boolean onKeyDown(int keyCode, KeyEvent event)
{
// TODO Auto-generated method stub
return super.onKeyDown(keyCode, event);
}
@Override
public boolean onTouchEvent(MotionEvent event)
{
// TODO Auto-generated method stub
x = (int) event.getX();
y = (int) event.getY();
tmp=(Button) findViewById(flag);//获取所选中的BUTTON
AbsoluteLayout.LayoutParams params1=new AbsoluteLayout.LayoutParams(50,50,x-25,y-50);
tmp.setLayoutParams(params1);//设置BUTTON的新位置
switch(event.getAction())
{
case MotionEvent.ACTION_DOWN:
tmp.invalidate();
tmp.setText("选中down");
break;
case MotionEvent.ACTION_UP:
tmp.invalidate();
tmp.setText("选中UP");
break;
case MotionEvent.ACTION_MOVE:
tmp.invalidate();
tmp.setText("选中move");
break;
}
return super.onTouchEvent(event);
}
}
分享到:
相关推荐
本文实例讲述了Android基于widget组件实现物体移动/控件拖动功能。分享给大家供大家参考,具体如下: package com.sky; import android.app.Activity; import android.os.Bundle; import android.view.KeyEvent; ...
D:UIDragObject:拖动该物体,被允许拖拽的物体会被拖拽,在此被允许拖动的物体必须放到目标物体之下 E:UIDragPanelContents:表示该面的所有组件也是允许被拖拽的 4. 其他: A:UIForward Events:表示从对象到...
1. PanWithMouse:让物体跟随鼠标移动,常用于创建动态视图效果。 2. LookAtTarget:使物体始终面向目标,常用于角色视角或目标指示。 3. LoadLevelOnClick:点击按钮后加载指定场景,简化场景切换操作。 4. Spin...
- 创建一个 Widget 是构建 UI 控件的基础,这涉及到选择 Atlas 和 Font,并将 Widget 添加到场景中。 2. 图集 Atlas 制作: - Atlas 是 NGUI 中用来合并多个图像资源的工具,可以减少渲染时的纹理切换,提高性能...
deepseek最新资讯、配置方法、使用技巧,持续更新中
Heric拓扑并网离网仿真模型:PR单环控制,SogIPLL锁相环及LCL滤波器共模电流抑制技术解析,基于Heric拓扑的离网并网仿真模型研究与应用分析:PR单环控制与Sogipll锁相环的共模电流抑制效能,#Heric拓扑并离网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 离网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; sogipll锁相环; lcl滤波器; Plecs版本4.7.3及以上,Heric拓扑:离网并网仿真模型,支持非单位功率因数与共模电流抑制
2024免费微信小程序毕业设计成品,包括源码+数据库+往届论文资料,附带启动教程和安装包。 启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS 讲解视频:https://www.bilibili.com/video/BV1BVKMeZEYr 技术栈:Uniapp+Vue.js+SpringBoot+MySQL。 开发工具:Idea+VSCode+微信开发者工具。
基于SMIC 40nm工艺库的先进芯片技术,SMIC 40nm工艺库技术细节揭秘:引领半导体产业新革命,smic40nm工艺库 ,smic40nm; 工艺库; 芯片制造; 纳米技术,SMIC 40nm工艺库:领先技术驱动的集成电路设计基础
2013年上半年软件设计师上午题-真题及答案解析
shp格式,可直接导入arcgis使用
ROS下的移动机器人路径规划算法:基于强化学习算法DQN、DDPG、SAC及TD3的实践与应用,ROS系统中基于强化学习算法的移动机器人路径规划策略研究:应用DQN、DDPG、SAC及TD3算法,ROS下的移动机器人路径规划算法,使用的是 强化学习算法 DQN DDPG SAC TD3等 ,ROS; 移动机器人; 路径规划算法; DQN; DDPG; SAC; TD3,ROS强化学习移动机器人路径规划算法研究
粒子群优化算法精准辨识锂电池二阶RC模型参数:高仿真精度下的SOC估计铺垫,粒子群优化算法精准辨识锂电池二阶RC模型参数:仿真验证与SOC估计铺垫,使用粒子群优化算法(PSO)辨识锂电池二阶RC模型参数(附MATLAB代码) 使用粒子群优化算法来辨识锂离子电池二阶RC模型的参数。 将粒子群优化算法寻找到的最优参数代入二阶RC模型进行仿真,经过验证,端电压的估计误差小于0.1%,说明粒子群优化算法辨识得到的参数具有较高的精度,为锂离子电池SOC的估计做铺垫。 ,关键词:粒子群优化算法(PSO); 锂电池二阶RC模型参数辨识; MATLAB代码; 端电压估计误差; 锂离子电池SOC估计。,PSO算法优化锂电池二阶RC模型参数:高精度仿真与MATLAB代码实现
selenium环境搭建-谷歌浏览器驱动
在当今科技日新月异的时代,智慧社区的概念正悄然改变着我们的生活方式。它不仅仅是一个居住的空间,更是一个集成了先进科技、便捷服务与人文关怀的综合性生态系统。以下是对智慧社区整体解决方案的精炼融合,旨在展现其知识性、趣味性与吸引力。 一、智慧社区的科技魅力 智慧社区以智能化设备为核心,通过综合运用物联网、大数据、云计算等技术,实现了社区管理的智能化与高效化。门禁系统采用面部识别技术,让居民无需手动操作即可轻松进出;停车管理智能化,不仅提高了停车效率,还大大减少了找车位的烦恼。同时,安防报警系统能够实时监测家中安全状况,一旦有异常情况,立即联动物业进行处理。此外,智能家居系统更是将便捷性发挥到了极致,通过手机APP即可远程控制家中的灯光、窗帘、空调等设备,让居民随时随地享受舒适生活。 视频监控与可视对讲系统的结合,不仅提升了社区的安全系数,还让居民能够实时查看家中情况,与访客进行视频通话,大大增强了居住的安心感。而电子巡更、公共广播等系统的运用,则进一步保障了社区的治安稳定与信息传递的及时性。这些智能化设备的集成运用,不仅提高了社区的管理效率,更让居民感受到了科技带来的便捷与舒适。 二、智慧社区的增值服务与人文关怀 智慧社区不仅仅关注科技的运用,更注重为居民提供多元化的增值服务与人文关怀。社区内设有互动LED像素灯、顶层花园控制喷泉等创意设施,不仅美化了社区环境,还增强了居民的归属感与幸福感。同时,社区还提供了智能家居的可选追加项,如空气净化器、远程监控摄像机等,让居民能够根据自己的需求进行个性化选择。 智慧社区还充分利用大数据技术,对居民的行为数据进行收集与分析,为居民提供精准化的营销服务。无论是周边的商业信息推送,还是个性化的生活建议,都能让居民感受到社区的智慧与贴心。此外,社区还注重培养居民的环保意识与节能意识,通过智能照明、智能温控等系统的运用,鼓励居民节约资源、保护环境。 三、智慧社区的未来发展与无限可能 智慧社区的未来发展充满了无限可能。随着技术的不断进步与创新,智慧社区将朝着更加智能化、融合化的方向发展。比如,利用人工智能技术进行社区管理与服务,将能够进一步提升社区的智能化水平;而5G、物联网等新技术的运用,则将让智慧社区的连接更加紧密、服务更加高效。 同时,智慧社区还将更加注重居民的体验与需求,通过不断优化智能化设备的功能与服务,让居民享受到更加便捷、舒适的生活。未来,智慧社区将成为人们追求高品质生活的重要选择之一,它不仅是一个居住的空间,更是一个融合了科技、服务、人文关怀的综合性生态系统,让人们的生活更加美好、更加精彩。 综上所述,智慧社区整体解决方案以其科技魅力、增值服务与人文关怀以及未来发展潜力,正吸引着越来越多的关注与认可。它不仅能够提升社区的管理效率与居民的生活品质,更能够为社区的可持续发展注入新的活力与动力。
PowerSettingsExplorer.rar 电脑的电源管理软件,明白的不多说。自己搜索即可知道。
deepseek最新资讯,配置方法,使用技巧,持续更新中
deepseek最新资讯、配置方法、使用技巧,持续更新中
RabbitMQ 是一个开源的消息代理(Message Broker),实现了 AMQP(Advanced Message Queuing Protocol) 协议,用于在分布式系统中实现高效、可靠的消息传递。
西门子S7-1200与汇川PLC新通信选择:Ethernet IP通信的突破与优势,功能安全及精准同步的创新实践。,西门子S7-1200与汇川PLC通信新选择:Ethernet IP通信方案亮相,替代Modbus TCP实现更高级功能与安全控制。,西门子PLC和汇川PLC新通信选择-西门子S7-1200 1500系列PLC也开始支持Ethernet IP通信了。 这为西门子系列的PLC和包括汇川AM400 600等Codesys系PLC的通信提供了新的解决方案。 当前两者之间的通信大多采用ModBus TCP通信。 Modbus TCP和EtherNet IP的区别主要是应用层不相同,ModbusTCP的应用层采用Modbus协议,而EtherNetIP采用CIP协议,这两种工业以太网的数据链路层采用的是CSMACCD,因此是标准的以太网,另外,这两种工业以太网的网络层和传输层采用TCPIP协议族。 还有一个区别是,Modbus协议中迄今没有协议来完成功能安全、高精度同步和运功控制等,而EtherNet IP有CIPSatety、ClIP Sync和ClPMotion来
自适应无迹卡尔曼滤波AUKF算法:系统估计效果展示与特性分析(含MATLAB代码与Excel数据),自适应无迹卡尔曼滤波AUKF算法:系统估计效果展示与特性分析(含MATLAB代码与Excel数据),自适应无迹卡尔曼滤波AUKF算法 配套文件包含MATLAB代码+excel数据+学习资料 估计效果与系统特性有关,图片展示为一复杂系统估计效果 ,AUKF算法; MATLAB代码; excel数据; 学习资料; 估计效果; 系统特性。,自适应无迹卡尔曼滤波AUKF算法:MATLAB代码与学习资料