=============第一章:DM介绍=================
Data mining的范畴:
- data collection and database creation
- data management (including data storage and retrieval, and database transaction processing)
- advanced data analysis (involving data warehousing and data mining).
Data mining的步骤:
- Data cleaning (to remove noise and inconsistent data)
- Data integration (where multiple data sources may be combined)
- Data selection (where data relevant to the analysis task are retrieved fromthe database)
- Data transformation (where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)
- Data mining (an essential process where intelligent methods are applied in order to extract data patterns)
- Pattern evaluation (to identify the truly interesting patterns representing knowledge based on some interestingness measures)
- Knowledge presentation (where visualization and knowledge representation techniques are used to present the mined knowledge to the user)
Data来源:db;dw;交易数据;文本;多媒体数据;流数据;web数据。
Data mining的分类——2大类 Descriptive mining 和 Predictive mining:
- Concept/Class Description: Characterization and Discrimination
- Mining Frequent Patterns, Associations, and Correlations
- Classification and Prediction
- Cluster Analysis
- Outlier Analysis
- Evolution Analysis
有意义的pattern:
- easily understood by humans
- valid on new or test data with some degree of certainty
- potentially useful
- novel
DM任务的要素(书本中用DMQL来描述这些要素)
- The set of task-relevant data to be mined
- The kind of knowledge to be mined
- The background knowledge to be used in the discovery process
- The interestingness measures and thresholds for pattern evaluation
- The expected representation for visualizing the discovered patterns
相关推荐
Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering ...
数据挖掘是信息技术领域的一个关键分支,它涉及到从大型数据集中发现有价值的信息和知识。《数据挖掘概念与技术第三版》是一本深入探讨这一主题的重要教材,由Jiawei Han、Micheline Kamber和Jimmy Lin共同撰写。...
Data Mining - Concepts and Techniques Third Edition Jiawei Han University of Illinois at Urbana–Champaign Micheline Kamber Jian Pei Simon Fraser University
韩家炜的《数据挖掘:概念与技术》是数据挖掘方面学习的入门经典,但中文版的翻译较差,难于理解作者本义。 网上已有的英文原版资源要么是第二版,要么是第三版的整理版,现特别奉献原书第二版与第三版的高清PDF版本...
《Data Mining: Concepts and Techniques》(数据挖掘:概念与技术)这本书是数据挖掘领域内的一本经典教材,由Jiawei Han,Micheline Kamber和Jian Pei三位专家撰写,目前已经更新到第三版。这本书不仅适合学术研究...
根据提供的文件信息,“Data Mining Concepts and Techniques.pdf”,我们可以深入探讨数据挖掘的基本概念、技术以及系统架构等内容。下面将对文档中的关键知识点进行详细解析。 ### 数据挖掘基础 #### 为什么需要...
1. **绪论**:介绍了数据挖掘的基本概念、发展历程以及数据挖掘在商业、科学和社会等领域的应用前景。 2. **数据预处理**:详细讨论了数据清洗、数据集成、数据变换和数据归约等预处理步骤的重要性及具体方法,为...
1. 数据挖掘的定义与目标 数据挖掘是从大量数据中通过算法寻找隐藏模式的过程。它的主要目标是发现知识、规律和有趣的关联,以支持决策制定和预测未来趋势。数据挖掘的任务包括分类、聚类、关联规则学习、序列模式...
《数据挖掘:概念与技术》是韩家炜教授的经典之作,该书的第三版深入浅出地阐述了数据挖掘这一领域的核心概念和技术。韩家炜,作为数据挖掘领域的权威专家,他的著作对于学习和理解这一领域具有极高的价值。...
Data Mining: Concepts and Techniques (3rd ed.) Jiawei Han, Micheline Kamber, and Jian PeiUniversity of Illinois at Urbana-Champaign &Simon; Fraser University©2013 Han, Kamber & Pei.
《数据挖掘:概念与技术》是一本深入探讨数据挖掘领域的经典著作。这本书全面阐述了数据挖掘的基本概念、方法和技术,是IT行业中数据科学领域的重要参考资料。数据挖掘是信息技术中的一个关键分支,它涉及从海量数据...
数据挖掘概念与技术 pdf part1 解压密码:DataMining 用7z压缩,不清楚别的方式能不能打开 打不开的请: 7-Zip 官方首页/7z下载 http://www.7-zip.org/ 中文首页 http://7z.sparanoid.com/
Data Mining Concepts And technology 3End Data Mining Concepts And technology 3End Data Mining Concepts And technology 3End Data Mining Concepts And technology 3End Data Mining Concepts And technology ...
经典著作的最新版,识货的来下!