`
quanminchaoren
  • 浏览: 928184 次
  • 性别: Icon_minigender_1
  • 来自: 上海
社区版块
存档分类
最新评论

Android simpleperf

阅读更多
Introduction of simpleperf
What is simpleperf
Simpleperf is a native profiling tool for Android. Its command-line interface supports broadly the same options as the linux-tools perf, but also supports various Android-specific improvements.

Simpleperf is part of the Android Open Source Project. The source code is at https://android.googlesource.com/platform/system/extras/+/master/simpleperf/. Bugs and feature requests can be submitted at http://github.com/android-ndk/ndk/issues.

How simpleperf works
Modern cpus have a hardware component called the performance monitoring unit (PMU). The PMU has several hardware counters, counting events like how many cpu cycles have happened, how many instructions have executed, or how many cache misses have happened.

The Linux kernel wraps these hardware counters into hardware perf events. In addition, the Linux kernel also provides hardware independent software events and tracepoint events. The Linux kernel exposes all this to userspace via the perf_event_open system call, which simpleperf uses.

Simpleperf has three main functions: stat, record and report.

The stat command gives a summary of how many events have happened in the profiled processes in a time period. Here’s how it works:

Given user options, simpleperf enables profiling by making a system call to linux kernel.
Linux kernel enables counters while scheduling on the profiled processes.
After profiling, simpleperf reads counters from linux kernel, and reports a counter summary.
The record command records samples of the profiled process in a time period. Here’s how it works:

Given user options, simpleperf enables profiling by making a system call to linux kernel.
Simpleperf creates mapped buffers between simpleperf and linux kernel.
Linux kernel enable counters while scheduling on the profiled processes.
Each time a given number of events happen, linux kernel dumps a sample to a mapped buffer.
Simpleperf reads samples from the mapped buffers and generates perf.data.
The report command reads a “perf.data” file and any shared libraries used by the profiled processes, and outputs a report showing where the time was spent.

Main simpleperf commands
Simpleperf supports several subcommands, including list, stat, record, report. Each subcommand supports different options. This section only covers the most important subcommands and options. To see all subcommands and options, use --help.

# List all subcommands.
$simpleperf --help

# Print help message for record subcommand.
$simpleperf record --help
simpleperf list
simpleperf list is used to list all events available on the device. Different devices may support different events because of differences in hardware and kernel.

$simpleperf list
List of hw-cache events:
  branch-loads
  ...
List of hardware events:
  cpu-cycles
  instructions
  ...
List of software events:
  cpu-clock
  task-clock
  ...
simpleperf stat
simpleperf stat is used to get an event counter summary of the profiled program. By passing options, we can select which events to use, which processes/threads to monitor, and how long to monitor. Below is an example.

# Stat using default events (cpu-cycles,instructions,...), and monitor
# process 7394 for 10 seconds.
$simpleperf stat -p 7394 --duration 10
Performance counter statistics:

1,320,496,145  cpu-cycles         # 0.131736 GHz                     (100%)
   510,426,028  instructions       # 2.587047 cycles per instruction  (100%)
     4,692,338  branch-misses      # 468.118 K/sec                    (100%)
886.008130(ms)  task-clock         # 0.088390 cpus used               (100%)
           753  context-switches   # 75.121 /sec                      (100%)
           870  page-faults        # 86.793 /sec                      (100%)

Total test time: 10.023829 seconds.
Select events
We can select which events to use via -e option. Below are examples:

# Stat event cpu-cycles.
$simpleperf stat -e cpu-cycles -p 11904 --duration 10

# Stat event cache-references and cache-misses.
$simpleperf stat -e cache-references,cache-misses -p 11904 --duration 10
When running the stat command, if the number of hardware events is larger than the number of hardware counters available in the PMU, the kernel shares hardware counters between events, so each event is only monitored for part of the total time. In the example below, there is a percentage at the end of each row, showing the percentage of the total time that each event was actually monitored.

# Stat using event cache-references, cache-references:u,....
$simpleperf stat -p 7394 -e     cache-references,cache-references:u,cache-references:k,cache-misses,cache-misses:u,cache-misses:k,instructions --duration 1
Performance counter statistics:

4,331,018  cache-references     # 4.861 M/sec    (87%)
3,064,089  cache-references:u   # 3.439 M/sec    (87%)
1,364,959  cache-references:k   # 1.532 M/sec    (87%)
   91,721  cache-misses         # 102.918 K/sec  (87%)
   45,735  cache-misses:u       # 51.327 K/sec   (87%)
   38,447  cache-misses:k       # 43.131 K/sec   (87%)
9,688,515  instructions         # 10.561 M/sec   (89%)

Total test time: 1.026802 seconds.
In the example above, each event is monitored about 87% of the total time. But there is no guarantee that any pair of events are always monitored at the same time. If we want to have some events monitored at the same time, we can use --group option. Below is an example.

# Stat using event cache-references, cache-references:u,....
$simpleperf stat -p 7394 --group cache-references,cache-misses --group cache-references:u,cache-misses:u --group cache-references:k,cache-misses:k -e instructions --duration 1
Performance counter statistics:

3,638,900  cache-references     # 4.786 M/sec          (74%)
   65,171  cache-misses         # 1.790953% miss rate  (74%)
2,390,433  cache-references:u   # 3.153 M/sec          (74%)
   32,280  cache-misses:u       # 1.350383% miss rate  (74%)
  879,035  cache-references:k   # 1.251 M/sec          (68%)
   30,303  cache-misses:k       # 3.447303% miss rate  (68%)
8,921,161  instructions         # 10.070 M/sec         (86%)

Total test time: 1.029843 seconds.
Select target to monitor
We can select which processes or threads to monitor via -p option or -t option. Monitoring a process is the same as monitoring all threads in the process. Simpleperf can also fork a child processing running a new command and monitor the child process. Below are examples.

# Stat process 11904 and 11905.
$simpleperf stat -p 11904,11905 --duration 10

# Stat thread 11904 and 11905.
$simpleperf stat -t 11904,11905 --duration 10

# Start a child process running `ls`, and stat it.
$simpleperf stat ls
Decide how long to monitor
When monitoring exist threads, we can use --duration option to decide how long to monitor. When monitoring a child process running a new command, simpleperf monitors until the child process ends. And we can use Ctrl-C to stop monitoring at any time. Below are examples.

# Stat process 11904 for 10 seconds.
$simpleperf stat -p 11904 --duration 10

# Stat until the child process running `ls` finishes.
$simpleperf stat ls

# Stop monitoring using Ctrl-C.
$simpleperf stat -p 11904 --duration 10
^C
simpleperf record
simpleperf record is used to dump records of the profiled program. By passing options, we can select which events to use, which processes/threads to monitor, the frequency to dump records, how long to monitor, and where to store records.

# Record on process 7394 for 10 seconds, using default event (cpu-cycles),
# using default sample frequency (4000 samples per second), writing records
# to perf.data.
$simpleperf record -p 7394 --duration 10
simpleperf I 07-11 21:44:11 17522 17522 cmd_record.cpp:316] Samples recorded: 21430. Samples lost: 0.
Select events
In most cases, the cpu-cycles event is used to evaluate consumed cpu time. As a hardware event, it is both accurate and efficient. We can also use other events via -e option. Below is an example.

# Record using event instructions.
$simpleperf record -e instructions -p 11904 --duration 10
Select target to monitor
The way to select target in record command is similar to that in stat command. Below are examples.

# Record process 11904 and 11905.
$simpleperf record -p 11904,11905 --duration 10

# Record thread 11904 and 11905.
$simpleperf record -t 11904,11905 --duration 10

# Record a child process running `ls`.
$simpleperf record ls
Set the frequency to record
We can set the frequency to dump records via the -f or -c options. For example, -f 4000 means dumping approximately 4000 records every second the monitored thread runs. If a monitored thread runs 0.2s in one second (it can be preempted or blocked in other times), simpleperf dumps about 4000 * 0.2 / 1.0 = 800 records every second. Another way is using -c option. For example, -c 10000 means dumping one record whenever 10000 events happen. Below are examples.

# Record with sample frequency 1000: sample 1000 times every second running.
$simpleperf record -f 1000 -p 11904,11905 --duration 10

# Record with sample period 100000: sample 1 time every 100000 events.
$simpleperf record -c 100000 -t 11904,11905 --duration 10
Decide how long to monitor
The way to decide how long to monitor in record command is similar to that in stat command. Below are examples.

# Record process 11904 for 10 seconds.
$simpleperf record -p 11904 --duration 10

# Record until the child process running `ls` finishes.
$simpleperf record ls

# Stop monitoring using Ctrl-C.
$simpleperf record -p 11904 --duration 10
^C
Set the path to store records
By default, simpleperf stores records in perf.data in current directory. We can use -o option to set the path to store records. Below is an example.

# Write records to data/perf2.data.
$simpleperf record -p 11904 -o data/perf2.data --duration 10
simpleperf report
simpleperf report is used to report based on perf.data generated by simpleperf record command. Report command groups records into different sample entries, sorts sample entries based on how many events each sample entry contains, and prints out each sample entry. By passing options, we can select where to find perf.data and executable binaries used by the monitored program, filter out uninteresting records, and decide how to group records.

Below is an example. Records are grouped into 4 sample entries, each entry is a row. There are several columns, each column showing piece of information belong to a sample entry. The first column is Overhead, which shows the percentage of events inside current sample entry in total event count. As the perf event is cpu-cycles, the overhead can be seen as the percentage of cpu time used in each function.

# Reports perf.data, using only records sampled in libsudo-game-jni.so,
# grouping records using thread name(comm), process id(pid), thread id(tid),
# function name(symbol), and showing sample count for each row.
$simpleperf report --dsos /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so --sort comm,pid,tid,symbol -n
Cmdline: /data/data/com.example.sudogame/simpleperf record -p 7394 --duration 10
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 28235
Event count: 546356211

Overhead  Sample  Command    Pid   Tid   Symbol
59.25%    16680   sudogame  7394  7394  checkValid(Board const&, int, int)
20.42%    5620    sudogame  7394  7394  canFindSolution_r(Board&, int, int)
13.82%    4088    sudogame  7394  7394  randomBlock_r(Board&, int, int, int, int, int)
6.24%     1756    sudogame  7394  7394  @plt
Set the path to read records
By default, simpleperf reads perf.data in current directory. We can use -i option to select another file to read records.

$simpleperf report -i data/perf2.data
Set the path to find executable binaries
If reporting function symbols, simpleperf needs to read executable binaries used by the monitored processes to get symbol table and debug information. By default, the paths are the executable binaries used by monitored processes while recording. However, these binaries may not exist when reporting or not contain symbol table and debug information. So we can use --symfs to redirect the paths. Below is an example.

$simpleperf report
# In this case, when simpleperf wants to read executable binary /A/b,
# it reads file in /A/b.

$simpleperf report --symfs /debug_dir
# In this case, when simpleperf wants to read executable binary /A/b,
# it prefers file in /debug_dir/A/b to file in /A/b.
Filter records
When reporting, it happens that not all records are of interest. Simpleperf supports five filters to select records of interest. Below are examples.

# Report records in threads having name sudogame.
$simpleperf report --comms sudogame

# Report records in process 7394 or 7395
$simpleperf report --pids 7394,7395

# Report records in thread 7394 or 7395.
$simpleperf report --tids 7394,7395

# Report records in libsudo-game-jni.so.
$simpleperf report --dsos /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so

# Report records in function checkValid or canFindSolution_r.
$simpleperf report --symbols "checkValid(Board const&, int, int);canFindSolution_r(Board&, int, int)"
Decide how to group records into sample entries
Simpleperf uses --sort option to decide how to group sample entries. Below are examples.

# Group records based on their process id: records having the same process
# id are in the same sample entry.
$simpleperf report --sort pid

# Group records based on their thread id and thread comm: records having
# the same thread id and thread name are in the same sample entry.
$simpleperf report --sort tid,comm

# Group records based on their binary and function: records in the same
# binary and function are in the same sample entry.
$simpleperf report --sort dso,symbol

# Default option: --sort comm,pid,tid,dso,symbol. Group records in the same
# thread, and belong to the same function in the same binary.
$simpleperf report
Features of simpleperf
Simpleperf works similar to linux-tools-perf, but it has following improvements:

Aware of Android environment. Simpleperf handles some Android specific situations when profiling. For example, it can profile embedded shared libraries in apk, read symbol table and debug information from .gnu_debugdata section. If possible, it gives suggestions when meeting errors, like how to disable perf_harden to enable profiling.
Support unwinding while recording. If we want to use -g option to record and report call-graph of a program, We need to dump user stack and register set in each record, and then unwind the stack to find the call chain. Simpleperf supports unwinding while recording, so it doesn’t need to store user stack in perf.data. So we can profile for a longer time with limited space on device.
Build static binaries. Simpleperf is a static binary. So it doesn’t need supported shared libraries to run. It means there is no limitation of Android version that simpleperf can run on, although some devices don’t support profiling.
Steps to profile native libraries
After introducing simpleperf, this section uses a simple example to show how to profile jni native libraries on Android using simpleperf. The example profiles an app called com.example.sudogame, which uses a jni native library sudo-game-jni.so. We focus on sudo-game-jni.so, not the java code or system libraries.

1. Run debug version of the app on device
We need to run debug version of the app, because we can’t use run-as for non debuggable apps.

2. Download simpleperf to the app's directory
Use uname to find the architecture on device

$adb shell uname -m
aarch64
So we should download simpleperf in arm64 directory to device.

$adb push device/arm64/simpleperf /data/local/tmp
$adb shell run-as com.example.sudogame cp /data/local/tmp/simpleperf .
$adb shell run-as com.example.sudogame chmod a+x simpleperf
$adb shell run-as com.example.sudogame ls -l
-rwxrwxrwx 1 u0_a90 u0_a90 3059208 2016-01-01 10:40 simpleperf
Note that some apps use arm native libraries even on arm64 devices (We can verify this by checking /proc/<process_id_of_app>/maps). In that case, we should use arm/simpleperf instead of arm64/simpleperf.

3. Enable profiling
Android devices may disable profiling by default, and we need to enable profiling.

$adb shell setprop security.perf_harden 0
4. Find the target process/thread to record
# Use `ps` to get process id of sudogame.
$adb shell ps  | grep sudogame
u0_a102   15869 545   1629824 76888 SyS_epoll_ 0000000000 S com.example.sudogame

# Use `ps -t` to get thread ids of process 15869.
# If this doesn’t work, you can try `ps -eT`.
$adb shell ps -t  | grep 15869
u0_a102   15869 545   1629824 76888 SyS_epoll_ 0000000000 S com.example.sudogame
u0_a102   15874 15869 1629824 76888 futex_wait 0000000000 S Jit thread pool
...
5. Record perf.data
# Record process 15869 for 30s, and use the app while recording it.
$adb shell run-as com.example.sudogame ./simpleperf record -p 15869 --duration 30
simpleperf W 07-12 20:00:33 16022 16022 environment.cpp:485] failed to read /proc/sys/kernel/kptr_restrict: Permission denied
simpleperf I 07-12 20:01:03 16022 16022 cmd_record.cpp:315] Samples recorded: 81445. Samples lost: 0.

$adb shell run-as com.example.sudogame ls -lh perf.data
-rw-rw-rw- 1 u0_a102 u0_a102 4.3M 2016-07-12 20:01 perf.data
So we have recorded perf.data with 81445 records. There is a warning about failing to read kptr_restrict. It doesn’t matter, only a notification that we can’t read kernel symbol addresses.

6. Report perf.data
Below are several examples reporting on device.

Report samples in different binaries
# Report how samples distribute on different binaries.
$adb shell run-as com.example.sudogame ./simpleperf report -n --sort dso
simpleperf W 07-12 19:15:10 11389 11389 dso.cpp:309] Symbol addresses in /proc/kallsyms are all zero. `echo 0 >/proc/sys/kernel/kptr_restrict` if possible.
Cmdline: /data/data/com.example.sudogame/simpleperf record -p 15869 --duration 30
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 81445
Event count: 34263925309

Overhead  Sample  Shared Object
75.31%    58231   [kernel.kallsyms]
8.44%     6845    /system/lib64/libc.so
4.30%     4667    /vendor/lib64/egl/libGLESv2_adreno.so
2.30%     2433    /system/lib64/libhwui.so
1.88%     1952    /system/lib64/libart.so
1.88%     1967    /system/framework/arm64/boot-framework.oat
1.59%     1218    /system/lib64/libcutils.so
0.69%     728     /system/lib64/libskia.so
0.63%     489     /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so
0.34%     312     /system/lib64/libart-compiler.so
...
According to the report above, most time is spent in kernel, and libsudo-game-jni.so costs only 0.63% by itself. It seems libsudo-game-jni.so can’t be the bottleneck. However, it is possible we didn’t record long enough to hit the hot spot, or code in libsudo-game-jni.so calls other libraries consuming most time.

Report samples in different functions
# Report how samples distribute inside libsudo-game-jni.so.
$adb shell run-as com.example.sudogame ./simpleperf report -n --dsos /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so --sort symbol
...
Overhead  Sample  Symbol
94.45%    461     unknown
5.22%     26      @plt
0.20%     1       Java_com_example_sudogame_GameModel_findConflictPairs
0.14%     1       Java_com_example_sudogame_GameModel_canFindSolution
In the report above, most samples belong to unknown symbol. It is because the libsudo-game-jni.so used on device doesn’t contain symbol table. We need to download shared library with symbol table to device. In android studio 2.1.2, the binary with symbol table is in [app_dir]/app/build/intermediates/binaries/debug/obj/arm64-v8a.

# Make a proper directory to download binary to device. This directory
# should be the same as the directory of
# /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so.
$adb shell run-as com.example.sudogame mkdir -p data/app/com.example.sudogame-2/lib/arm64
# Download binary with symbol table.
$adb push [app_dir]/app/build/intermediates/binaries/debug/obj/arm64-v8a/libsudo-game-jni.so /data/local/tmp
$adb shell run-as com.example.sudogame cp /data/local/tmp/libsudo-game-jni.so data/app/com.example.sudogame-2/lib/arm64

# Report how samples distribute inside libsudo-game-jni.so with debug binary
# support.
$adb shell run-as com.example.sudogame ./simpleperf report -n --dsos /data/app/com.example.sudogame-2/lib/arm64/libsudo-game-jni.so --sort symbol --symfs .
...
Overhead  Sample  Symbol
71.08%    347     checkValid(Board const&, int, int)
15.13%    74      randomBlock_r(Board&, int, int, int, int, int)
7.94%     38      canFindSolution_r(Board&, int, int)
5.22%     26      @plt
0.30%     2       randomBoard(Board&)
0.20%     1       Java_com_example_sudogame_GameModel_findConflictPairs
0.14%     1       Java_com_example_sudogame_GameModel_canFindSolution
With the help of debug libsudo-game-jni.so, the report above shows that most time in libsudo-game-jni.so is spent in function checkValid. And we can look into it further.

Report samples in one function
# Report how samples distribute inside checkValid() function.
# adb shell command can’t pass ‘(‘ in arguments, so we run the command
# inside `adb shell`.
$adb shell
device$ run-as com.example.sudogame ./simpleperf report -n --symbols "checkValid(Board const&, int, int)" --sort vaddr_in_file --symfs .
...
Overhead  Sample  VaddrInFile
14.90%    50      0x24d8
8.48%     29      0x251c
5.52%     19      0x2468
...
The report above shows samples hitting different places inside function checkValid(). By using objdump to disassemble libsudo-game-jni.so, we can find which are the hottest instructions in checkValid() function.

# Disassemble libsudo-game-jni.so.
$aarch64-linux-android-objdump -d -S -l libsudo-game-jni.so >libsudo-game-jni.asm
7. Record and report call graph
What is a call graph
A call graph is a tree showing function call relations. For example, a program starts at main() function, and main() calls functionOne() and functionTwo(), and functionOne() calls functionTwo() and functionThree(). Then the call graph is as below.

main() -> functionOne()
      |    |
      |    |-> functionTwo()
      |    |
      |     ->  functionThree()
       -> functionTwo()
Record dwarf based call graph
To generate call graph, simpleperf needs to generate call chain for each record. Simpleperf requests kernel to dump user stack and user register set for each record, then it backtraces the user stack to find the function call chain. To parse the call chain, it needs support of dwarf call frame information, which usually resides in .eh_frame or .debug_frame section of the binary. So we need to use --symfs to point out where is libsudo-game-jni.so with debug information.

# Record thread 11546 for 30s, use the app while recording it.
$adb shell run-as com.example.sudogame ./simpleperf record -t 11546 -g --symfs . --duration 30
simpleperf I 01-01 07:13:08  9415  9415 cmd_record.cpp:336] Samples recorded: 65279. Samples lost: 16740.
simpleperf W 01-01 07:13:08  9415  9415 cmd_record.cpp:343] Lost 20.4099% of samples, consider increasing mmap_pages(-m), or decreasing sample frequency(-f), or increasing sample period(-c).

$adb shell run-as com.example.sudogame ls -lh perf.data
-rw-rw-rw- 1 u0_a96 u0_a96 8.3M 2016-01-01 08:49 perf.data
Note that kernel can’t dump user stack >= 64K, so the dwarf based call graph doesn’t contain call chains consuming >= 64K stack. So avoiding allocating large memory on stack is a good way to improve dwarf based call graph.

Record stack frame based call graph
Another way to generate call graph is to rely on the kernel parsing the call chain for each record. To make it possible, kernel has to be able to identify the stack frame of each function call. This is not always possible, because compilers can optimize away stack frames, or use a stack frame style not recognized by the kernel. So how well it works depends.

# Record thread 11546 for 30s, use the app while recording it.
$adb shell run-as com.example.sudogame ./simpleperf record -t 11546 --call-graph fp --symfs . --duration 30
simpleperf W 01-02 05:43:24 23277 23277 environment.cpp:485] failed to read /proc/sys/kernel/kptr_restrict: Permission denied
simpleperf I 01-02 05:43:54 23277 23277 cmd_record.cpp:323] Samples recorded: 95023. Samples lost: 0.

$adb shell run-as com.example.sudogame ls -lh perf.data
-rw-rw-rw- 1 u0_a96 u0_a96 39M 2016-01-02 05:43 perf.data
Report call graph
Report call graph on device
# Report call graph.
$adb shell run-as com.example.sudogame ./simpleperf report -n -g --symfs .
Cmdline: /data/data/com.example.sudogame/simpleperf record -t 11546 -g --symfs . -f 1000 --duration 30
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 23840
Event count: 41301992088

Children  Self    Sample  Command          Pid    Tid    Shared Object                                                   Symbol
97.98%    0.69%   162     xample.sudogame  11546  11546  /data/app/com.example.sudogame-1/lib/arm64/libsudo-game-jni.so  checkValid(Board const&, int, int)
   |
   -- checkValid(Board const&, int, int)
      |
      |--99.95%-- __android_log_print
      |           |
      |           |--92.19%-- __android_log_buf_write
      |           |           |
      |           |           |--73.50%-- libcutils.so[+1120c]
...
Report call graph in callee mode
Call graph can be shown in two modes. One is caller mode, showing how functions call others. The other is callee mode, showing how functions are called by others. We can use -g callee option to show call graph in callee mode.

# Report call graph.
$host/simpleperf report -n -g callee --symfs .
Cmdline: /data/data/com.example.sudogame/simpleperf record -t 11546 -g --symfs . -f 1000 --duration 30
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 23840
Event count: 41301992088

Children  Self    Sample  Command          Pid    Tid    Shared Object                                                   Symbol
97.58%    0.21%   48      xample.sudogame  11546  11546  /system/lib64/liblog.so                                         __android_log_print
   |
   -- __android_log_print
      |
      |--99.70%-- checkValid(Board const&, int, int)
      |           |
      |           |--99.31%-- canFindSolution_r(Board&, int, int)
...
Report using report.py
The call graph generated by simpleperf report may be hard to read in text mode. Simpleperf provides a python script showing gui interface of call graph. It can be used as below.

# Show call graph in gui interface.
$adb shell run-as com.example.sudogame ./simpleperf report -n -g --symfs . >perf.report
$python report.py perf.report
Steps to profile java code on rooted devices
Simpleperf only supports profiling native instructions in binaries in ELF format. If the java code is executed by interpreter, or with jit cache, it can’t be profiled by simpleperf. As Android supports Ahead-of-time compilation, it can compile java bytecode into native instructions. We currently need root privilege to force Android fully compiling java code into native instructions in ELF binaries with debug information (this could be fixed by a profileable=”true” in AndroidManifest that causes PackageManager to pass -g to dex2oat). We also need root privilege to read compiled native binaries (because installd writes them to a directory whose uid/gid is system:install). So profiling java code can currently only be done on rooted devices.

1. Fully compile java code into native instructions
On Android N
# Restart adb as root. It needs root privilege to setprop below.
$adb root
# Set the property to compile with debug information.
$adb shell setprop dalvik.vm.dex2oat-flags -g

# Fully compile the app instead of using interpreter or jit.
$adb shell cmd package compile -f -m speed com.example.sudogame

# Restart the app on device.
On Android M
# Restart adb as root. It needs root privilege to setprop below.
$adb root
# Set the property to compile with debug information.
$adb shell setprop dalvik.vm.dex2oat-flags -g

# Reinstall the app.
$adb install -r app-debug.apk
On Android L
# Restart adb as root. It needs root privilege to setprop below.
$adb root
# Set the property to compile with debug information.
$adb shell setprop dalvik.vm.dex2oat-flags --include-debug-symbols

# Reinstall the app.
$adb install -r app-debug.apk
2. Record perf.data
# Change to the app’s data directory.
$ adb root && adb shell
device# cd `run-as com.example.sudogame pwd`

# Record as root as simpleperf needs to read the generated native binary.
device#./simpleperf record -t 25636 -g --symfs . -f 1000 --duration 30
simpleperf I 01-02 07:18:20 27182 27182 cmd_record.cpp:323] Samples recorded: 23552. Samples lost: 39.

device#ls -lh perf.data
-rw-rw-rw- 1 root root 11M 2016-01-02 07:18 perf.data
3. Report perf.data
# Report how samples distribute on different binaries.
device#./simpleperf report -n --sort dso
Cmdline: /data/data/com.example.sudogame/simpleperf record -t 25636 -g --symfs . -f 1000 --duration 30
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 23552
Event count: 40662494587

Overhead  Sample  Shared Object
85.73%    20042   [kernel.kallsyms]
9.41%     2198    /system/lib64/libc.so
2.29%     535     /system/lib64/libcutils.so
0.95%     222     /data/app/com.example.sudogame-1/lib/arm64/libsudo-game-jni.so
...
0.04%     16      /system/lib64/libandroid_runtime.so
0.03%     10      /data/app/com.example.sudogame-1/oat/arm64/base.odex
...
As in the report above, there are samples in /data/app/com.example.sudogame-1/oat/arm64/base.odex, which is the native binary compiled from java code.

# Report call graph.
device#./simpleperf report -n -g --symfs .
Cmdline: /data/data/com.example.sudogame/simpleperf record -t 25636 -g --symfs . -f 1000 --duration 30
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 23552
Event count: 40662494587

Children  Self    Sample  Command          Pid    Tid    Shared Object                                                   Symbol
98.32%    0.00%   1       xample.sudogame  25636  25636  /data/app/com.example.sudogame-1/oat/arm64/base.odex            void com.example.sudogame.GameModel.reInit()
   |
   -- void com.example.sudogame.GameModel.reInit()
      |
      |--98.98%-- boolean com.example.sudogame.GameModel.canFindSolution(int[][])
      |           Java_com_example_sudogame_GameModel_canFindSolution
      |           |
      |           |--99.93%-- canFindSolution(Board&)
...
As in the report above, function reInit() and canFindSolution() are java functions.

https://android.googlesource.com/platform/prebuilts/simpleperf/+/ndk-r13/README.md
分享到:
评论

相关推荐

    extras-master-simpleperf.tar.gz

    《深入解析Android Simpleperf及其相关工具》 Simpleperf是Android系统中的一个强大的性能分析工具,其开源代码为我们深入了解和优化应用程序性能提供了宝贵的资源。在深入探讨之前,我们首先需要了解什么是...

    工具+simpleperf+火焰图解析

    Simpleperf是Android系统中的一款性能分析工具,也适用于Linux环境,它能够提供CPU周期级别的性能数据,帮助开发者精确地定位程序中的性能热点。Simpleperf的工作原理基于采样,即在运行时定期检查程序状态,收集...

    simpleperf-tools.tar.gz

    《深入解析Android Simpleperf Tools》 在Android系统中,性能分析是开发者优化应用、提升用户体验的关键环节。Simpleperf是一款强大的性能分析工具,它为开发者提供了深入洞察应用性能的能力。本篇将详细介绍...

    Android串口通信(Android Studio)

    在Android开发中,串口通信(Serial Port Communication)是一种重要的技术,它允许设备之间通过串行接口进行数据交换。在Android Studio环境下实现串口通信,开发者可以构建与硬件设备交互的应用,例如读取传感器...

    JS调用Android方法,向Android方法传递json数据

    在现代的移动应用开发中,JavaScript与原生平台之间的交互变得越来越常见,特别是在使用Android的WebView组件时。本文将深入探讨如何使用JavaScript调用Android的方法,并传递JSON数据,以实现两者之间的高效通信。 ...

    Android扫雷游戏(基于Android Studio)

    【Android扫雷游戏开发详解】 在移动开发领域,Android Studio是Google推出的官方集成开发环境(IDE),用于构建Android应用程序。本项目"Android扫雷游戏"就是利用Android Studio进行开发的一个实例,旨在帮助初学...

    Android 4.4.2 sdk工具

    Android 4.4.2 SDK(软件开发工具包)是Google为开发者提供的一个关键工具集,用于构建、调试和发布针对Android 4.4.2(KitKat)操作系统的应用程序。这个离线包包含了所有必要的组件,使得开发者无需连接到互联网...

    Android 7.1.1 (API 25) SDK Platform 下载

    # mv /opt/android-sdk/platforms/android-25/android-7.1.1/* /opt/android-sdk/platforms/android-25/ # rm -rf /opt/android-sdk/platforms/android-25/android-7.1.1 官网下载地址:...

    Android设置虚线、圆角、渐变

    在Android开发中,为UI元素添加虚线、圆角和渐变效果是常见的需求,可以提升应用的视觉吸引力。下面将详细讲解如何实现这些效果。 ### 一、虚线(Dashed Line) 在Android中,我们可以使用`Shape Drawable`来创建...

    Android开发入门60个小案例+源代码

    在Android开发领域,初学者经常会面临许多挑战,如理解Android应用程序的基本架构、学习XML布局、掌握Java或Kotlin编程语言,以及如何与设备硬件交互等。"Android开发入门60个小案例+源代码"这个资源提供了丰富的...

    Android BLE蓝牙例子(包括android版Lightblue)实例源码

    源码里面有Bluetooth4_3/BLEDemo/Android_Lightblue.apk三个.前两个是BLE的demo。BLEDemo这个功能较Bluetooth4_3多一些,有兴趣的可以都看下。Android_Lightblue.apk是Android版的lightblue,在进行ble开发的时候用...

    Android SipDemo( 网络电话的例子源码,android 2.3以上才能用)

    Android SipDemo是一个示例应用,它展示了如何在Android平台上实现网络电话功能,特别是针对Android 2.3(Gingerbread)及以上版本。这个项目基于Android的SIP(Session Initiation Protocol)API,这是一种用于...

    android应用开发范例精解

    第2篇为应用开发篇,通过实例介绍了Android UI布局、Android人机界面、手机硬件设备的使用、Android本地存储系统、Android中的数据库、多线程设计、Android传感器、Android游戏开发基础、Android与Internet,以及...

    android-ndk-r13b-windows-x86-64

    7. **simpleperf**:Android的性能分析工具,可以帮助开发者找出代码中的性能瓶颈,进行性能优化。 8. **platforms**:包含各个Android API级别对应的头文件和库,开发者需要根据目标设备的Android版本选择合适的...

    Android之基于RTP/RTSP即时通讯-Android源码

    在Android平台上,即时通讯(Instant Messaging,简称IM)已经成为移动应用不可或缺的一部分,而结合视频通信功能则让用户体验更上一层楼。本项目“Android之基于RTP/RTSP即时通讯-Android源码”正是这样的一个解决...

    50款Android studio项目源码.zip

    《Android Studio项目源码解析与学习指南》 在Android应用开发的世界中,Android Studio作为官方推荐的集成开发环境(IDE),已经成为开发者们的首选工具。本文将深入探讨"50款Android studio项目源码.zip"这一资源...

    android检测U盘插拔事件

    在Android系统中,检测U盘(USB存储设备)的热插拔事件是一项常见的需求,尤其在开发与USB设备交互的应用时。"android检测U盘插拔事件"这个标题揭示了我们要探讨的核心技术点:如何在Android应用中监听并处理U盘的...

    android sdk27版本

    Android SDK是Android应用程序开发不可或缺的一部分,它为开发者提供了构建、测试和调试应用所需的各种工具。在本场景中,我们关注的是Android SDK的27版本,这对应于Android 8.1.0,也称为Oreo。这个版本的SDK包含...

    android抽屉菜单 android panel

    在Android应用开发中,抽屉菜单(Drawer Menu)是一种常见的设计模式,用于提供导航功能,让用户可以从屏幕边缘滑出一个包含多个选项的列表。这种设计通常遵循Material Design指南,是Google推荐的Android应用界面...

    Android studio 小案例

    在Android开发领域,Android Studio是谷歌官方推荐的集成开发环境(IDE),用于构建高质量的Android应用。本小案例将深入探讨如何使用Android Studio进行实际项目开发。以下将详细介绍Android Studio的一些核心功能和...

Global site tag (gtag.js) - Google Analytics