<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical" fontSize="12" fontFamily="Georgia">
<mx:Script>
<![CDATA[
import mx.controls.TextArea;
private function gongyueshu(txt1:String, txt2:String):String
{
var a1:int=parseInt(txt1);
var a2:int=parseInt(txt2);
//trace(a1);
var a:int=Math.max(a1, a2);
var b:int=Math.min(a1, a2);
var r:int=1;
//注:%是取模操作
while (r > 0)
{
r=a % b;
a=b;
b=r;
}
var res:String=a.toString();
return res
}
]]>
</mx:Script>
<mx:Panel title="最大公约数计算" width="394" height="351" horizontalAlign="center" layout="vertical" fontFamily="Verdana" fontSize="14">
<mx:HBox width="362" height="100%">
<mx:ApplicationControlBar dock="true" width="100%" height="100%" fillAlphas="[1.0, 1.0]" fillColors="[#F5F9E2, #F3FCCC]">
<mx:VBox height="257" width="220" fontSize="14" themeColor="#05578B" backgroundAlpha="0.0" borderColor="#F8F8F8" borderStyle="solid" borderThickness="0" fontFamily="Times New Roman">
<mx:Label text="数字1" width="100" color="#3C130B" alpha="1.0"/>
<mx:TextArea text="1" textAlign="right" id="text1" height="29" width="100" change="text3.text=gongyueshu(text1.text,text2.text)"/>
<mx:Label text="数字2" width="100"/>
<mx:TextArea text="2" textAlign="right" id="text2" height="28" width="100" change="text3.text=gongyueshu(text1.text,text2.text)"/>
<mx:Label text="结果" width="100"/>
<mx:TextArea text="3" textAlign="right" id="text3" height="28" width="100" borderColor="#000406" themeColor="#85C3EA" color="#F7C8C4" backgroundColor="#0A092A"/>
<mx:HRule width="202" height="0" strokeColor="#0E0C70"/>
<mx:Button label="数字1、2的最大公约数" click="text3.text=gongyueshu(text1.text,text2.text)" textAlign="center" width="200" id="button2" fontWeight="normal"/>
</mx:VBox>
</mx:ApplicationControlBar>
</mx:HBox>
</mx:Panel>
</mx:Application>
分享到:
相关推荐
根据提供的文件信息,本文将详细解释如何使用C语言来实现最大公约数(Greatest Common Divisor, GCD)和最小公倍数(Least Common Multiple, LCM)的计算。 ### 最大公约数(GCD) #### 概念 最大公约数是指两个...
本文将深入探讨三种不同的方法来计算两个整数的最大公约数:分解质因数法、连续整除法以及欧几里得算法,并结合提供的代码文件进行解析。 1. **分解质因数法**: 分解质因数法是通过将两个数分别分解为质因数,...
欧几里得算法,也称为辗转相除法,是计算两个正整数最大公约数(Greatest Common Divisor, GCD)的一种经典方法。该算法基于以下原理:两个正整数a和b(a>b)的最大公约数等于a除以b的余数c和b之间的最大公约数。...
用辗转相除法,计算最大公约数的C语言代码。
本文件"求大整数的最大公约数"是用C++语言编写的一个大整数类,专门用于计算两个大整数的最大公约数(Greatest Common Divisor, GCD)。 大整数类通常基于数组或链表结构来存储多位数,以适应任意长度的整数。在这...
最大公约数(Greatest Common Divisor,GCD)算法是计算两个或多个整数的最大公共除数的数学方法。在编程领域,这个概念被广泛应用于优化算法、编码和解决数学问题。本文将深入探讨最大公约数算法的原理、常见的实现...
在IT领域,尤其是在编程与算法设计中,求解两个数的最大公约数(Greatest Common Divisor,简称GCD)和最小公倍数(Least Common Multiple,简称LCM)是基础而重要的数学概念,广泛应用于各种计算机科学场景,如数据...
基于FPGA开发板的两位数求最大公约数和最小公倍数的设计,该设计中利用辗转相减法求得公约数与公倍数,且两个数的数值可通过按键修改,设计灵活可靠。该设计基于vivado开发,并带有testbench文件,方便仿真学习。
用LabVIEW求最大公约数和最小公倍数。可以自行选择数据。
最大公约数,也称为最大公因数,是指两个或多个整数共有约数中最大的一个。例如,数字8和12的公约数有1、2、4,其中最大的公约数是4。 ### 二、求最大公约数的常用方法 求解最大公约数的方法有很多种,常见的包括...
### 对求最大公约数进行白盒测试的知识点详解 #### 实验目的 - **掌握静态白盒测试方法及一般要求**:了解如何通过分析源代码结构来发现软件缺陷,包括但不限于代码审查、符号执行等技术。 - **掌握白盒测试用例的...
java最大公约数是指两个或多个数的最大公因数,例如,12和15的最大公约数是3,因为3是它们的最大公因数。java中可以使用欧几里德算法来计算最大公约数,该算法的思路是:较大的数除以较小的数,然后将较小的数作为下...
python 输入两个正整数计算最大公约数和最小公倍数 示例
在这个特定的项目中,我们关注的是如何使用Verilog来实现一个计算两个数最大公约数(Greatest Common Divisor, GCD)的功能。 最大公约数是指能同时整除两个或两个以上整数的最大正整数。求解最大公约数有多种方法...
最大公约数的递归解法,这是一个cpp程序,运行正常,是求输入的2个数的最大公约数的递归算法
3.如果 A=a×b×c×d,B=b×d×e,那么 A 和 B 的最大公约数就是( )。 答案:b×d 分析:A=a×b×c×d,B=b×d×e,故 A 和 B 的最大公约数是 b×d。 ★★★解决问题 1. 帮 5(1)班同学排队。男女生分别排队,...
最大公约数(Greatest Common Divisor,GCD)也被称为最大公因数,是两个或多个非零整数共有约数中最大的一个。在数学上,最大公约数可以用多种方法来计算,例如欧几里得算法、辗转相除法、更相减损法等。 1. **...
用碾压法求出两个数的最大公因数,然后将剩下的分子连乘再乘以最大公因数即可获得最小公倍数
python求最大公约数和最小公倍数 #辗转相除法 def gcd(a,b): #最大公约数函数,且最小公倍数 = 两个数相乘 / 最大公约数 if b == 0: return a else: return gcd(b,a%b) print("请输入两个数:") j,k = input()....
最大公约数(Greatest Common Divisor, GCD),也称为最大公因数(Greatest Common Factor, GCF),是指两个或多个整数共有因子中最大的一个。在本程序中,我们关注的是两个整数的最大公约数。 **计算方法:** - **...