`
qindongliang1922
  • 浏览: 2190270 次
  • 性别: Icon_minigender_1
  • 来自: 北京
博客专栏
7265517b-f87e-3137-b62c-5c6e30e26109
证道Lucene4
浏览量:117705
097be4a0-491e-39c0-89ff-3456fadf8262
证道Hadoop
浏览量:126115
41c37529-f6d8-32e4-8563-3b42b2712a50
证道shell编程
浏览量:60056
43832365-bc15-3f5d-b3cd-c9161722a70c
ELK修真
浏览量:71433
社区版块
存档分类
最新评论

Win7上eclipse无插件提交Hadoop2.2分布式作业

阅读更多

一直以来,都以为,想在Win上提交hadoop集群的作业,必须得在eclipse上安装hadoop-eclipse-plugin插件才可以提交,但最近与同事交流,发现其实,不一定必须安装hadoop的eclipse插件,才能提交。今天试了一把,发现果然可以不用安装插件也可以正确提交作业到集群上,故在此总结一下。


既然,无须安装hadoop的eclipse插件,就能提交hadoop作业,那为毛,还出现了这个插件呢?   其实安装插件除了能直接提交作业外,还有一个比较方便的功能,就是能直接在eclipse上对HDFS上的文件,进行删除,上传,新建目录等,这一点是不安装插件做不到的,当然,如果你不需要这些操作,那么就无所谓了,仅仅提交个作业而已。


下面说下,如何在eclipse上使用无插件提交hadoop作业,(在hadoop集群的8088界面上可以看到提交的作业信息是否成功)。

序号操作说明
1eclipse IDE散仙在这里是4.2版本的eclipse
2hadoop2.2的64位完整包散仙在这里放在D盘根目录下
3修改源码org/apache/hadoop/mapred/YARNRunner.java,改变linux与windows的路径不一致bug散仙已经修改好,文末散仙会上传这个修改好的类
4把linux集群上的配置文件,core-site.xml,hdfs-site.xml,mapred.site.xml和yarn-site.xml文件,放在src根目录下,另外在D盘hadoop的/etc/hadoop目录下,覆盖一下注意一致
5编写wordcount的MR例子,开始测试入门测试
6高富帅工程师一名主角
7配置hadoop的win上的环境变量HADOOP_HOME只配置这一个即可



上面的操作都完成后,就可以进行测试了,散仙在这里的WordCount源码如下:

package com.mywordcount;

 

 
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FilenameFilter;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;

/***
 * 
 * Hadoop2.2.0  无插件提交集群作业
 * 
 * @author qindongliang
 * 
 *         hadoop技术交流群: 376932160
 * 
 * 
 * */
public class MyWordCount2 {

	/**
	 * Mapper
	 * 
	 * **/
	private static class WMapper extends
			Mapper<LongWritable, Text, Text, IntWritable> {

		private IntWritable count = new IntWritable(1);
		private Text text = new Text();

		@Override
		protected void map(LongWritable key, Text value, Context context)
				throws IOException, InterruptedException {
			String values[] = value.toString().split("#");
			// System.out.println(values[0]+"========"+values[1]);
			count.set(Integer.parseInt(values[1]));
			text.set(values[0]);
			context.write(text, count);

		}

	}

	/**
	 * Reducer
	 * 
	 * **/
	private static class WReducer extends
			Reducer<Text, IntWritable, Text, Text> {

		private Text t = new Text();

		@Override
		protected void reduce(Text key, Iterable<IntWritable> value,
				Context context) throws IOException, InterruptedException {
			int count = 0;
			for (IntWritable i : value) {
				count += i.get();
			}
			t.set(count + "");
			context.write(key, t);

		}

	}

	public static void printEnv(Job job) {
		Configuration conf = job.getConfiguration();
		System.out.println("###########################################");
		System.out.println("fs.defaultFS:" + conf.get("fs.defaultFS"));
		System.out.println("mapred.job.tracker:"
				+ conf.get("mapred.job.tracker"));
		System.out.println("mapreduce.framework.name" + ":"
				+ conf.get("mapreduce.framework.name"));
		System.out.println("yarn.nodemanager.aux-services" + ":"
				+ conf.get("yarn.nodemanager.aux-services"));
		System.out.println("yarn.resourcemanager.address" + ":"
				+ conf.get("yarn.resourcemanager.address"));
		System.out.println("yarn.resourcemanager.scheduler.address" + ":"
				+ conf.get("yarn.resourcemanager.scheduler.address"));
		System.out.println("yarn.resourcemanager.resource-tracker.address"
				+ ":"
				+ conf.get("yarn.resourcemanager.resource-tracker.address"));
		System.out.println("yarn.application.classpath" + ":"
				+ conf.get("yarn.application.classpath"));
		System.out.println("zkhost:" + conf.get("zkhost"));
		System.out.println("namespace:" + conf.get("namespace"));
		System.out.println("project:" + conf.get("project"));
		System.out.println("collection:" + conf.get("collection"));
		System.out.println("shard:" + conf.get("shard"));
		System.out.println("###########################################");
	}
	 /**
	  * 载入hadoop的配置文件
	  * 兼容hadoop1.x和hadoop2.x
	  * 
	  * */
	public static void getConf(final Configuration conf) throws FileNotFoundException{
		String HADOOP_CONF_DIR = System.getenv().get("HADOOP_CONF_DIR");
		String HADOOP_HOME = System.getenv().get("HADOOP_HOME");
		System.out.println("HADOOP_HOME:" + HADOOP_HOME);
		System.out.println("HADOOP_CONF_DIR:" + HADOOP_CONF_DIR);//此处兼容hadoop1.x
		
		//此处兼容hadoop2.x
		if (HADOOP_CONF_DIR == null || HADOOP_CONF_DIR.isEmpty()) {
			HADOOP_CONF_DIR = HADOOP_HOME + "/etc/hadoop";
		}

		//得到hadoop的conf目录的路径加载文件
		File file = new File(HADOOP_CONF_DIR);
		FilenameFilter filter = new FilenameFilter() {

			@Override
			public boolean accept(File dir, String name) {
				return name.endsWith("xml");
			}
		};
		
		
		//获取hadoop的仅仅xml结尾的文件列表
		String[] list = file.list(filter);
		for (String fn : list) {
			System.out.println("Loading Configuration: " + HADOOP_CONF_DIR
					+ "/" + fn);
			//循环加载xml文件
			conf.addResource(new FileInputStream(HADOOP_CONF_DIR + "/" + fn));
		}

		 
		
		//yarn的classpath路径,如果为空则加载拼接yarn的路径
		if (conf.get("yarn.application.classpath", "").isEmpty()) {
			StringBuilder sb = new StringBuilder();
			sb.append(System.getenv("CLASSPATH")).append(":");
			sb.append(HADOOP_HOME).append("/share/hadoop/common/lib/*")
					.append(":");
			sb.append(HADOOP_HOME).append("/share/hadoop/common/*").append(":");
			sb.append(HADOOP_HOME).append("/share/hadoop/hdfs/*").append(":");
			sb.append(HADOOP_HOME).append("/share/hadoop/mapreduce/*")
					.append(":");
			sb.append(HADOOP_HOME).append("/share/hadoop/yarn/*").append(":");
			sb.append(HADOOP_HOME).append("/lib/*").append(":");
			conf.set("yarn.application.classpath", sb.toString());
		}
		
		
		
		
		
		
	}
	
 

	public static void main(String[] args) throws Exception { {
			 
			Configuration conf = new Configuration();
			conf.set("mapreduce.job.jar", "myjob.jar");//此处代码,一定放在Job任务前面,否则会报类找不到的异常
			Job job = Job.getInstance(conf, "345");	 
			getConf(conf);
			job.setJarByClass(MyWordCount2.class);

			job.setMapperClass(WMapper.class);
			job.setReducerClass(WReducer.class);
			job.setInputFormatClass(TextInputFormat.class);
			job.setOutputFormatClass(TextOutputFormat.class);

			job.setMapOutputKeyClass(Text.class);
			job.setMapOutputValueClass(IntWritable.class);
			job.setOutputKeyClass(Text.class);
			job.setOutputValueClass(Text.class);

			String path = "/qin/output";
			FileSystem fs = FileSystem.get(conf);
			Path p = new Path(path);
			if (fs.exists(p)) {
				fs.delete(p, true);
				System.out.println("输出路径存在,已删除!");
			}
			FileInputFormat.setInputPaths(job, "/qin/input");
			FileOutputFormat.setOutputPath(job, p);
			printEnv(job);
			System.exit(job.waitForCompletion(true) ? 0 : 1); 
		 
	}

	}
}


项目结构目录,截图如下:



运行信息如下:

HADOOP_HOME:D:\hadoop-2.2.0
HADOOP_CONF_DIR:null
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/capacity-scheduler.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/core-site.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/hadoop-policy.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/hdfs-site.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/httpfs-site.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/mapred-site.xml
Loading Configuration: D:\hadoop-2.2.0/etc/hadoop/yarn-site.xml
2014-06-25 20:40:08,419 WARN  [main] conf.Configuration (Configuration.java:loadProperty(2172)) - java.io.FileInputStream@3ba08dab:an attempt to override final parameter: mapreduce.jobtracker.address;  Ignoring.
输出路径存在,已删除!
###########################################
fs.defaultFS:hdfs://h1:9000
2014-06-25 20:40:08,897 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
mapred.job.tracker:h1:8021
mapreduce.framework.name:yarn
yarn.nodemanager.aux-services:mapreduce_shuffle
yarn.resourcemanager.address:h1:8032
yarn.resourcemanager.scheduler.address:h1:8030
yarn.resourcemanager.resource-tracker.address:h1:8031
yarn.application.classpath:$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,$HADOOP_YARN_HOME/share/hadoop/yarn/*,$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*
zkhost:null
namespace:null
project:null
collection:null
shard:null
###########################################
2014-06-25 20:40:08,972 INFO  [main] client.RMProxy (RMProxy.java:createRMProxy(56)) - Connecting to ResourceManager at h1/192.168.46.32:8032
2014-06-25 20:40:09,153 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(149)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2014-06-25 20:40:09,331 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(287)) - Total input paths to process : 1
2014-06-25 20:40:09,402 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(394)) - number of splits:1
2014-06-25 20:40:09,412 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - user.name is deprecated. Instead, use mapreduce.job.user.name
2014-06-25 20:40:09,412 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.jar is deprecated. Instead, use mapreduce.job.jar
2014-06-25 20:40:09,413 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
2014-06-25 20:40:09,413 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
2014-06-25 20:40:09,413 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
2014-06-25 20:40:09,414 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.job.name is deprecated. Instead, use mapreduce.job.name
2014-06-25 20:40:09,414 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
2014-06-25 20:40:09,414 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
2014-06-25 20:40:09,414 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
2014-06-25 20:40:09,414 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
2014-06-25 20:40:09,415 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapreduce.outputformat.class is deprecated. Instead, use mapreduce.job.outputformat.class
2014-06-25 20:40:09,416 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
2014-06-25 20:40:09,416 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
2014-06-25 20:40:09,416 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
2014-06-25 20:40:09,416 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(840)) - mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
2014-06-25 20:40:09,502 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(477)) - Submitting tokens for job: job_1403723552088_0016
2014-06-25 20:40:09,651 INFO  [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(174)) - Submitted application application_1403723552088_0016 to ResourceManager at h1/192.168.46.32:8032
2014-06-25 20:40:09,683 INFO  [main] mapreduce.Job (Job.java:submit(1272)) - The url to track the job: http://h1:8088/proxy/application_1403723552088_0016/
2014-06-25 20:40:09,683 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1317)) - Running job: job_1403723552088_0016
2014-06-25 20:40:17,070 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1338)) - Job job_1403723552088_0016 running in uber mode : false
2014-06-25 20:40:17,072 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) -  map 0% reduce 0%
2014-06-25 20:40:23,232 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) -  map 100% reduce 0%
2014-06-25 20:40:30,273 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1345)) -  map 100% reduce 100%
2014-06-25 20:40:30,289 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1356)) - Job job_1403723552088_0016 completed successfully
2014-06-25 20:40:30,403 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1363)) - Counters: 43
	File System Counters
		FILE: Number of bytes read=58
		FILE: Number of bytes written=160123
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=136
		HDFS: Number of bytes written=27
		HDFS: Number of read operations=6
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters 
		Launched map tasks=1
		Launched reduce tasks=1
		Data-local map tasks=1
		Total time spent by all maps in occupied slots (ms)=4398
		Total time spent by all reduces in occupied slots (ms)=4263
	Map-Reduce Framework
		Map input records=4
		Map output records=4
		Map output bytes=44
		Map output materialized bytes=58
		Input split bytes=98
		Combine input records=0
		Combine output records=0
		Reduce input groups=3
		Reduce shuffle bytes=58
		Reduce input records=4
		Reduce output records=3
		Spilled Records=8
		Shuffled Maps =1
		Failed Shuffles=0
		Merged Map outputs=1
		GC time elapsed (ms)=94
		CPU time spent (ms)=980
		Physical memory (bytes) snapshot=310431744
		Virtual memory (bytes) snapshot=1681850368
		Total committed heap usage (bytes)=136450048
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=38
	File Output Format Counters 
		Bytes Written=27


至此,我们已经可以成功的在无插件的环境里提交hadoop任务了,如果提交过程中,出现权限异常,可以在eclipse的run环境里配置,linux上安装hadoop的用户名即可,截图如下:



注意,一定是安装hadoop的用户,写成其他的用户,可能会导致没有权限访问HDFS上的数据,从而使提交的作业运行失败。
  • 大小: 108 KB
  • 大小: 283.4 KB
  • 大小: 135.4 KB
分享到:
评论

相关推荐

    hadoop2.2伪分布式集群搭建

    hadoop2.2伪分布式集群搭建 #查看防火墙状态 service iptables status #关闭防火墙 service iptables stop #查看防火墙开机启动状态 chkconfig iptables --list #关闭防火墙开机启动 chkconfig iptables off

    hadoop 2.2 eclipse plugins 插件

    hadoop 2.2 eclipse plugins 插件 拷贝至plugins即可 留给自己的,当做备份用

    hadoop2.2 eclipse插件编译

    标题中的“hadoop2.2 eclipse插件编译”意味着我们要讨论的是如何在Eclipse中编译适用于Hadoop 2.2版本的插件。这个过程通常涉及到下载源代码、配置构建环境以及执行编译命令。 描述中提到的“hadoop 2.x插件编译所...

    hadoop伪分布式安装.pdf

    ### Hadoop伪分布式安装知识点详解 #### 一、Hadoop伪分布式概述 Hadoop是一种能够处理海量数据的大规模分布式计算框架。它通过将任务分解到多个计算机节点上并行处理来提高数据处理效率。Hadoop支持多种运行模式,...

    eclipse hadoop2 插件

    7. **最佳实践**:为了充分利用这个插件,建议保持Eclipse、Hadoop插件和Hadoop集群的版本协调一致,同时定期更新插件以获取最新的功能和修复。 8. **学习资源**:网上有许多教程和社区资源可以帮助学习如何使用...

    hadoop 2.2 安装包

    在这个版本中,Hadoop增强了其分布式存储系统HDFS(Hadoop Distributed File System)以及分布式计算框架MapReduce。下面我们将深入探讨Hadoop 2.2的关键知识点。 首先,HDFS的增强主要体现在以下几个方面: 1. **...

    实验3—Hadoop 完全分布式模式搭建

    实验3—Hadoop 完全分布式模式搭建

    eclipse安装Hadoop插件

    ### Eclipse安装Hadoop插件详解 #### 一、前言 随着大数据技术的快速发展,Hadoop作为处理海量数据的重要工具之一,其应用越来越广泛。为了更好地利用Eclipse进行Hadoop程序开发,安装Hadoop Eclipse插件是十分...

    hadoop2.2 64位 (下)

    hadoop2.2 64位 (下) centos6.4 64位编译 这是下半部分

    Hadoop技术-Hadoop完全分布式安装.pptx

    7. Hadoop完全分布式安装的优点:Hadoop完全分布式安装可以带来许多优点,例如提高数据处理性能、增强数据存储能力、提高高性能计算任务的处理能力等。 8. Hadoop完全分布式安装的应用场景:Hadoop完全分布式安装...

    win7下eclipse配置hadoop的插件

    标题中提到的关键是"win7下eclipse配置hadoop的插件",这意味着我们要在Windows 7操作系统上,利用Eclipse进行Hadoop开发的环境配置。这通常包括以下几个步骤: 1. **下载Hadoop插件**:这里提到的`hadoop-eclipse-...

    hadoop-eclipse插件各版本合集

    Hadoop-Eclipse插件是Apache Hadoop项目与Eclipse IDE集成的一个重要工具,它使得Hadoop开发者能够在Eclipse环境中直接创建、编辑、调试和管理Hadoop MapReduce作业,极大地提升了开发效率。本合集包含了多个版本的...

    hadoop全分布式-脚本一键安装

    7. 启动Hadoop服务:通过start-dfs.sh和start-yarn.sh命令启动Hadoop的各个组件。 8. 设置SSH免密登录:为了集群间通信,脚本可能会包含一个步骤来配置所有节点间的SSH无密码登录。 9. 验证安装:最后,脚本可能会...

    Hadoop完全分布式环境搭建步骤

    Hadoop完全分布式环境搭建文档,绝对原创,并且本人亲自验证并使用,图文并茂详细介绍了hadoop完全分布式环境搭建所有步骤,条例格式清楚,不能成功的,请给我留言!将给与在线支持!

    hadoop完全分布式环境搭建.docx

    hadoop、分布式环境、完全分布式、大数据、搭建

    Hadoop2.2+Zookeeper3.4.5+HBase0.96集群环境搭建

    Hadoop2.2+Zookeeper3.4.5+HBase0.96集群环境搭建 Hadoop2.2+Zookeeper3.4.5+HBase0.96集群环境搭建是大数据处理和存储的重要组件,本文档将指导用户从零开始搭建一个完整的Hadoop2.2+Zookeeper3.4.5+HBase0.96集群...

    eclipse连接hadoop所需要的hadoop.ddl和eclipse插件和hadoop运行案例

    这个插件提供了与Hadoop集群交互的功能,例如创建、提交和监控MapReduce作业。它简化了开发过程,允许开发者在Eclipse环境中直接管理Hadoop项目,浏览HDFS文件系统,甚至直接在IDE内编写、测试和调试作业。 安装...

    shell脚本配置Hadoop伪分布式.zip

    伪分布式模式是在单个节点上模拟分布式环境,这对于学习和测试Hadoop功能非常有用,无需复杂的多节点集群设置。 1. **Hadoop-2.8.1**: 这是Hadoop的特定版本,2.8.1是Hadoop 2.x系列的一个稳定版本。这个版本提供了...

    Hadoop完全分布式环境搭建

    ### Hadoop完全分布式环境搭建详解 #### 一、前言 在大数据处理领域,Hadoop是一种广泛使用的开源框架,主要用于存储和处理大规模数据集。它包括HDFS(Hadoop Distributed File System)和MapReduce等核心组件。...

Global site tag (gtag.js) - Google Analytics