`
qindongliang1922
  • 浏览: 2188420 次
  • 性别: Icon_minigender_1
  • 来自: 北京
博客专栏
7265517b-f87e-3137-b62c-5c6e30e26109
证道Lucene4
浏览量:117659
097be4a0-491e-39c0-89ff-3456fadf8262
证道Hadoop
浏览量:126065
41c37529-f6d8-32e4-8563-3b42b2712a50
证道shell编程
浏览量:60013
43832365-bc15-3f5d-b3cd-c9161722a70c
ELK修真
浏览量:71396
社区版块
存档分类
最新评论

如何使用eclipse调试Hadoop作业

阅读更多
使用eclipse来调试hadoop作业是非常简洁方便的,散仙以前也有用eclipse开发过hadoop程序,但是一直没有深入了解eclipse调试的一些模式,有些时候也会出一些莫名奇妙的异常,最常见的就是下面这个
java.lang.RuntimeException: java.lang.ClassNotFoundException: com.qin.sort.TestSort$SMapper
	at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:857)
	at org.apache.hadoop.mapreduce.JobContext.getMapperClass(JobContext.java:199)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:718)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
	at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:415)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)

这个异常是最莫名其妙的一个,明明自己的MR类里面有这个Mapper的内部类,但是一运行程序,就报这个异常,说找不到这个类,然后就百般查找问题,找来找去,也没找出个所以然。

其实这并不是程序的问题,而是对eclipse的调试模式不够了解的问题,eclipse上运行hadoop总的来说有2种模式,第一种就是Local模式,也叫本地模式,第二种就是我们正式的线上集群模式,当运行本地模式的时候,程序并不会被提交到Hadoop集群上,而是基于单机的模式跑的,但是单机的模式,运行的结果仍在是存储在HDFS上的,只不过没有利用hadoop集群的资源,单机的模式不要提交jar包到hadoop集群上,因此一般我们使用local来测试我们的MR程序是否能够正常运行,
下面我们来看下,基于Local模式跑的一个排序作业:

排序数据:
a 784
b 12
c -11
dd 99999

程序源码:
package com.qin.sort;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


 
/**
 * 测试排序的
 * MR作业类
 * 
 * QQ技术交流群:324714439
 * @author qindongliang
 * 
 * 
 * **/
public class TestSort {
	
	
	/**
	 * Map类
	 * 
	 * **/
	private static class SMapper extends Mapper<LongWritable, Text, IntWritable, Text>{
		
		private Text text=new Text();//输出
		 private static final IntWritable one=new IntWritable();
		
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
			String s=value.toString();
		 	//System.out.println("abc: "+s);
		//	if((s.trim().indexOf(" ")!=-1)){
			 String ss[]=s.split(" ");
 			 one.set(Integer.parseInt(ss[1].trim()));//
 			 text.set(ss[0].trim());  
 			 context.write(one, text);
		}
	}
	
	/**
	 * Reduce类
	 *
	 * */
	 private static class SReduce extends Reducer<IntWritable, Text, Text, IntWritable>{
		 private Text text=new Text();
		 @Override
		protected void reduce(IntWritable arg0, Iterable<Text> arg1,Context context)
				throws IOException, InterruptedException {
			 
			 
			 for(Text t:arg1){
				 text.set(t.toString());
				
				 context.write(text, arg0);
			 } 
		}
	 }
	 
	 /**
	  * 排序的类
	  * 
	  * **/
	 private static class SSort extends WritableComparator{
		 
		 public SSort() {
			 super(IntWritable.class,true);//注册排序组件
		}
		 @Override
		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,
				int arg4, int arg5) {
			/**
			 * 控制升降序的关键控制-号是降序
			 * */
			return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5);//注意使用负号来完成降序
		}
		 
		 @Override
		public int compare(Object a, Object b) {
	 
			return    -super.compare(a, b);//注意使用负号来完成降序
		}
		 
		 
	 }
	
	 /**
	  * main方法
	  * */
	 public static void main(String[] args) throws Exception{
		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    
		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		  JobConf conf=new JobConf();
		//Configuration conf=new Configuration();
		   //在你的文件地址前自动添加:hdfs://master:9000/
		 // conf.set("fs.default.name", "hdfs://192.168.75.130:9000");
		  //指定jobtracker的ip和端口号,master在/etc/hosts中可以配置
		//  conf.set("mapred.job.tracker","192.168.75.130:9001");
		 // conf.get("mapred.job.tracker");
		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));
		//  conf.setJar("tt.jar");
		  FileSystem  fs=FileSystem.get(conf);
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 		  
		  Job job=new Job(conf, "sort123"); 
          job.setJarByClass(TestSort.class);
          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型
          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
          job.setMapperClass(SMapper.class);//map类
          job.setReducerClass(SReduce.class);//reduce类
          job.setSortComparatorClass(SSort.class);//排序类
//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
//		  job.setOutputFormatClass(TextOutputFormat.class);
          System.exit(job.waitForCompletion(true) ? 0 : 1);  
		 
		 
	}
	

}

打印结果如下:
模式:  local
存在此路径, 已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local1242054158_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local1242054158_0001_m_000000_0
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/output/sort.txt:0+28
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
INFO - Task.done(858) | Task:attempt_local1242054158_0001_m_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_m_000000_0' done.
INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local1242054158_0001_m_000000_0
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 35 bytes
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.done(858) | Task:attempt_local1242054158_0001_r_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.commit(1011) | Task attempt_local1242054158_0001_r_000000_0 is allowed to commit now
INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local1242054158_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
INFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_r_000000_0' done.
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local1242054158_0001
INFO - Counters.log(585) | Counters: 19
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=26
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=28
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=393
INFO - Counters.log(589) |     HDFS_BYTES_READ=56
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=135742
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=39
INFO - Counters.log(589) |     Map input records=4
INFO - Counters.log(589) |     Reduce shuffle bytes=0
INFO - Counters.log(589) |     Spilled Records=8
INFO - Counters.log(589) |     Map output bytes=25
INFO - Counters.log(589) |     Total committed heap usage (bytes)=455475200
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=4
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Reduce output records=4
INFO - Counters.log(589) |     Map output records=4


排序结果如下:
dd	99999
a	784
b	12
c	-11

单机模式调试通过之后,我们就可以考虑采用hadoop集群的模式来跑,这时候有2种方式,可以来完成这件事,第一是,为了方便将整个项目打成一个jar包,上传到Linux上,然后执行shell命令:
bin/hadoop jar tt.jar com.qin.sort.TestSort
来进行测试,注意,散仙是为了方便,路径是写死在程序里面所以后面不用输入,输入和输出路径,正式的开发,为了灵活性,一般会通过外部传产来指定输入和输出路径。

第二种方式,也比较方便,直接在eclipse中提交到hadoop集群作业中,不过即使是使用eclipse来提交作业,还是需要将整个项目打成一个jar包,只不过这时是eclipse帮我们提交作业的,这样我们就可以Win平台上直接提交运行hadoop作业了,但是主流的还是使用上传jar包的方式。关于把整个项目打成一个jar包,散仙在后面会上传一个ant脚本,直接执行它就可以了,这样就可以把有依赖关系的类打在一起,把一整个项目做为一个整体,在hadoop上,只需要指定jar,指定类的全名称,和输入,输出路径即可。ant的脚本内容如下:

<project name="${component.name}" basedir="." default="jar">
	<property environment="env"/>
	<!--
	<property name="hadoop.home" value="${env.HADOOP_HOME}"/>
	-->
	<property name="hadoop.home" value="D:/hadoop-1.2.0"/>
	<!-- 指定jar包的名字 -->
	<property name="jar.name" value="tt.jar"/>
	<path id="project.classpath">
		<fileset dir="lib">
			<include name="*.jar" />
		</fileset>
		<fileset dir="${hadoop.home}">
			<include name="**/*.jar" />
		</fileset>
	</path>
	<target name="clean" >
	 	<delete dir="bin" failonerror="false" />
		<mkdir dir="bin"/>
 	</target>	
	<target name="build" depends="clean">
 		<echo message="${ant.project.name}: ${ant.file}"/>
 		<javac destdir="bin" encoding="utf-8" debug="true" includeantruntime="false" debuglevel="lines,vars,source">
            <src path="src"/>
 			<exclude name="**/.svn" />
            <classpath refid="project.classpath"/>
        </javac>
		<copy todir="bin">
			<fileset dir="src">
				<include name="*config*"/>
			</fileset>
		</copy>
 	</target>
	
 	<target name="jar" depends="build">
 		<copy todir="bin/lib">
 			<fileset dir="lib">
 				<include name="**/*.*"/>
	 		</fileset>
 		</copy>
 		
 		<path id="lib-classpath">
 			<fileset dir="lib" includes="**/*.jar" />
 		</path>
 		
 		<pathconvert property="my.classpath" pathsep=" " >
 			<mapper>
 		    	<chainedmapper>
 		        	<!-- 移除绝对路径 -->
 		        	<flattenmapper />
 		        	<!-- 加上lib前缀 -->
 		        	<globmapper from="*" to="lib/*" />
 		       </chainedmapper>
 		     </mapper>
 		     <path refid="lib-classpath" />
 		</pathconvert>
 		
 		<jar basedir="bin" destfile="${jar.name}" >
 			<include name="**/*"/>
 			<!-- define MANIFEST.MF -->
 			<manifest>
				<attribute name="Class-Path" value="${my.classpath}" />
 			</manifest>
 		</jar>
 	</target>
</project>

运行上面的这个ant脚本之后,我们的项目就会被打成一个jar包,截图如下:


jar包有了之后,我们先测试在eclipse上如何把作业提交到hadoop集群上,只要把main方面的代码,稍加改动即可:
 /**
	  * main方法
	  * */
	 public static void main(String[] args) throws Exception{
		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    
		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		  JobConf conf=new JobConf();
		 //Configuration conf=new Configuration();//可以使用这个conf来测试Local模式
		 //如果在src目录下有,mapred-site.xml文件,就不要此行代码
		 //注意此行代码也是在非Local模式下才使用
		 conf.set("mapred.job.tracker","192.168.75.130:9001");
		 // conf.get("mapred.job.tracker");
		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));
		 // conf.setJar("tt.jar"); 非Local模式下使用
		  FileSystem  fs=FileSystem.get(conf);
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 		  
		  Job job=new Job(conf, "sort123"); 
          job.setJarByClass(TestSort.class);
          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型
          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
          job.setMapperClass(SMapper.class);//map类
          job.setReducerClass(SReduce.class);//reduce类
          job.setSortComparatorClass(SSort.class);//排序类
//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
//		  job.setOutputFormatClass(TextOutputFormat.class);
          System.exit(job.waitForCompletion(true) ? 0 : 1);  
		 
		 
	}


运行程序,输出,如下:
模式:  192.168.75.130:9001
存在此路径, 已经删除......
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201403252058_0035
INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 33%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201403252058_0035
INFO - Counters.log(585) | Counters: 29
INFO - Counters.log(587) |   Job Counters 
INFO - Counters.log(589) |     Launched reduce tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_MAPS=8498
INFO - Counters.log(589) |     Total time spent by all reduces waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Total time spent by all maps waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Launched map tasks=1
INFO - Counters.log(589) |     Data-local map tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_REDUCES=9667
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=26
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=39
INFO - Counters.log(589) |     HDFS_BYTES_READ=140
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=117654
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=28
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=39
INFO - Counters.log(589) |     Map input records=4
INFO - Counters.log(589) |     Reduce shuffle bytes=39
INFO - Counters.log(589) |     Spilled Records=8
INFO - Counters.log(589) |     Map output bytes=25
INFO - Counters.log(589) |     Total committed heap usage (bytes)=176033792
INFO - Counters.log(589) |     CPU time spent (ms)=1140
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=4
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Physical memory (bytes) snapshot=259264512
INFO - Counters.log(589) |     Reduce output records=4
INFO - Counters.log(589) |     Virtual memory (bytes) snapshot=1460555776
INFO - Counters.log(589) |     Map output records=4

我们可以看出,运行正常,排序的内容如下:

dd	99999
a	784
b	12
c	-11

结果和local模式下的一样,还有一个与local模式不同的地方是,我们可以在http://192.168.75.130:50030/jobtracker.jsp的任务页面上找到刚才执行的任务状况,这一点在Local模式下运行程序,是没有的。/size]

[size=large]最后,散仙再来看下,如何将jar包,上传到Linux提交作业到hadoop集群上。刚才,我们已经把jar给打好了,现在只需上传到linux上即可:

然后开始执行shell命令运行程序:



到此,我们已经完美的执行成功,最后一点需要注意的是,在执行排序任务时,如果出现异常:
java.lang.Exception: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)
Caused by: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable
	at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1019)
	at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:690)
	at org.apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)
	at com.qin.sort.TestSort$SMapper.map(TestSort.java:51)
	at com.qin.sort.TestSort$SMapper.map(TestSort.java:1)
	at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
	at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
	at java.util.concurrent.FutureTask.run(FutureTask.java:166)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
	at java.lang.Thread.run(Thread.java:722)


这个异常的出现,多半是因为,我们没有指定输出的Key,或者Value,或者指定的类型不一致,导致,我们只需要正确的设置输出的Key或者Value的类型即可.
job.setOutputKeyClass(IntWritable.class);
		   job.setOutputValueClass(Text.class);



设置完后,就可以正常测试运行了。





  • 大小: 100.9 KB
  • 大小: 80.8 KB
  • 大小: 108.3 KB
  • 大小: 943.9 KB
分享到:
评论

相关推荐

    配置Eclipse连接Hadoop

    在本文中,我们将深入探讨如何配置Eclipse IDE以连接到Hadoop集群,这对于开发和调试Hadoop相关的Java应用程序至关重要。Eclipse是一个强大的集成开发环境,支持多种编程语言,包括Java,而Hadoop是一个分布式计算...

    eclipse连接hadoop所需要的hadoop.ddl和eclipse插件和hadoop运行案例

    在Eclipse中,`hadoop.ddl`可以用于辅助开发和调试Hadoop MapReduce任务,使开发人员能够更好地理解和操作HDFS上的数据。 接下来,我们讨论Eclipse插件。为了在Eclipse中支持Hadoop开发,我们需要安装特定的插件,...

    eclipse连接hadoop相关工具

    标题中的“eclipse连接hadoop相关工具”指的是在Eclipse集成开发环境中配置和使用Hadoop的相关组件,以便于开发和调试Hadoop MapReduce程序。这个主题涵盖了Eclipse插件、Hadoop的DLL文件以及Winutils工具,这些都是...

    eclipse的hadoop插件

    4. **运行与调试**:可以直接在Eclipse内提交MapReduce作业到Hadoop集群,进行本地或远程运行和调试。可以设置断点、查看变量状态,以及跟踪程序执行流程。 5. **资源管理**:通过插件,开发者可以查看集群状态,如...

    Eclipse开发Hadoop相关项目本地配置插件

    6. **开发与调试**:有了正确的配置和插件,现在可以在Eclipse中编写、构建、运行和调试Hadoop程序了。插件会帮助你管理和上传作业到Hadoop集群,同时提供日志查看和调试功能。 7. **文件名称列表"eclipse开发...

    eclipse hadoop2 插件

    Eclipse Hadoop2 插件是为开发人员提供的一种强大工具,它允许用户在Eclipse集成开发环境中(IDE)直接编写、调试和管理Hadoop项目。这个插件针对Hadoop 2.x版本进行了优化,提供了丰富的功能来简化Hadoop应用程序的...

    eclipse 操作Hadoop插件

    4. **提交 MapReduce 作业**:开发者可以将编写好的 MapReduce 任务直接从 Eclipse 提交到 Hadoop 集群进行执行,查看任务状态,甚至调试作业。 5. **日志查看**:在 Eclipse 内部查看 MapReduce 作业的日志,方便...

    eclipse连接hadoop插件2.6.0/5 2.7.3

    为了在Eclipse中方便地开发、测试和调试Hadoop项目,开发者通常需要安装特定的Hadoop插件。本压缩包提供的是针对Eclipse连接Hadoop的不同版本插件,适用于不同版本的Eclipse,因为每个Eclipse版本可能需要兼容的插件...

    eclipse-hadoop2.7.1.zip

    这个压缩包包括了“Hadoop-Eclipse-Plugin-2.7.1.jar”,这是一个Eclipse插件,允许开发者在Eclipse内部创建、调试和运行Hadoop作业。此外,还包含了“hadoop.dll”和“winutils.exe”,这两个文件是Windows环境下...

    Eclipse Hadoop2.7插件

    Eclipse Hadoop2.7插件是专门为Java开发者设计的一款工具,它允许用户在流行的集成开发环境(IDE)Eclipse中直接进行Hadoop项目的开发、调试和管理。这个插件极大地简化了Hadoop应用程序的创建过程,使得开发人员...

    eclipse hadoop 例子源代码

    在Eclipse中,开发者首先需要安装Hadoop插件,如Hadoop-Eclipse-Plugin,以便可以直接在IDE中创建、运行和调试Hadoop作业。MyWordCount的源代码通常会包含两个Java类:`Mapper.java`和`Reducer.java`,分别对应Map和...

    安装hadoop使用Eclipse的插件

    8. **测试与运行**:使用插件,可以直接在Eclipse中提交MapReduce作业到Hadoop集群进行测试和运行。在项目上右键点击,选择"Hadoop" -&gt; "Run on Cluster"。 9. **调试与优化**:Hadoop Eclipse plugin还提供了调试...

    eclipse的hadoop2.7插件以及hadoop-common编译文件

    在IT行业中,Eclipse是一款广泛使用的Java集成开发环境(IDE),而Hadoop是Apache软件基金会的一个开源项目,主要处理大数据的分布式存储和计算。本文将详细介绍如何使用Eclipse的Hadoop2.7插件以及Hadoop-common...

    eclipse开发hadoop的最基础操作及图视

    在Hadoop生态系统中,Eclipse是一款广泛使用的集成开发环境(IDE),它通过特定插件支持对Hadoop...同时,通过MapReduce视图,我们可以直观地查看和管理Hadoop集群,这对于理解和优化Hadoop作业的执行流程非常有帮助。

    eclipse-hadoop合集

    这个“eclipse-hadoop合集”提供了与不同Eclipse版本兼容的Hadoop-eclipse插件,通过安装这些插件,开发者可以在熟悉的Eclipse环境中进行Hadoop项目开发,包括编写MapReduce程序、管理HDFS文件、监控作业状态等,极...

    eclipse 运行hadoop工具包

    7. **运行与调试**:通过插件,可以直接在Eclipse内提交MapReduce作业到Hadoop集群,查看作业状态,甚至设置断点进行调试。 8. **日志查看**:Eclipse插件通常也会提供查看Hadoop任务日志的功能,便于开发者定位和...

    在eclipse中配置hadoop插件

    标题中的“在eclipse中配置hadoop插件”是指在集成开发环境Eclipse中安装和配置Hadoop插件,以便于开发和调试Hadoop MapReduce项目。这个过程涉及到多个步骤和知识点,包括Eclipse的扩展性、Hadoop的开发工具支持...

    hadoop-eclipse插件各版本合集

    Hadoop-Eclipse插件是Apache Hadoop项目与Eclipse IDE集成的一个重要工具,它使得Hadoop开发者能够在Eclipse环境中直接创建、编辑、调试和管理Hadoop MapReduce作业,极大地提升了开发效率。本合集包含了多个版本的...

Global site tag (gtag.js) - Google Analytics