matadata:
hadoop a
spark a
hive a
hbase a
tachyon a
storm a
redis a
自定义分组
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class MyGroup {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length!=2){
System.err.println("Usage databaseV1 <inputpath> <outputpath>");
}
Job job = Job.getInstance(conf, MyGroup.class.getSimpleName() + "1");
job.setJarByClass(MyGroup.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(MyMapper1.class);
job.setGroupingComparatorClass(MyGroupComparator.class);
job.setReducerClass(MyReducer1.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
job.waitForCompletion(true);
}
public static class MyMapper1 extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
String[] spl=value.toString().split("\t");
context.write(new Text(spl[0].trim()), new Text(spl[1].trim()));
}
}
public static class MyReducer1 extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text k2, Iterable<Text> v2s, Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
Long count=0L;
for (@SuppressWarnings("unused") Text v2 : v2s) {
count++;
context.write(new Text("in--"+k2), new Text(count.toString()));
}
context.write(new Text("out--"+k2), new Text(count.toString()));
}
}
public static class MyGroupComparator extends WritableComparator{
public MyGroupComparator(){
super(Text.class,true);
}
@SuppressWarnings("rawtypes")
public int compare(WritableComparable a, WritableComparable b) {
Text p1 = (Text) a;
Text p2 = (Text) b;
p1.compareTo(p2);
return 0;
}
}
}
结果
in--hadoop 1
in--hbase 2
in--hive 3
in--redis 4
in--spark 5
in--storm 6
in--tachyon 7
out--tachyon 7
然后看下默认分组
public static class MyGroupComparator extends WritableComparator{
public MyGroupComparator(){
super(Text.class,true);
}
@SuppressWarnings("rawtypes")
public int compare(WritableComparable a, WritableComparable b) {
Text p1 = (Text) a;
Text p2 = (Text) b;
return p1.compareTo(p2);
}
}
结果
in--hadoop 1
out--hadoop 1
in--hbase 1
out--hbase 1
in--hive 1
out--hive 1
in--redis 1
out--redis 1
in--spark 1
out--spark 1
in--storm 1
out--storm 1
in--tachyon 1
out--tachyon 1
通过对比,自定义分组就很容易理解了
分享到:
相关推荐
5. **GROUP BY操作**:GROUP BY是数据库操作中的一个概念,用于按指定字段将数据分组。在Java中,可以使用`HashMap`或`TreeMap`等数据结构,根据分组键存储对应的值列表,然后对每个分组进行聚合计算。 6. **统计...
源码可能包括了Mapper和Reducer类,以及必要的辅助工具类,例如自定义Partitioner和Comparator,它们在保证JOIN和GROUP BY正确性方面起着关键作用。 总之,通过本次大数据课程设计,你将掌握如何利用Hadoop ...
在Pig Latin中,数据处理任务被表达为一系列的数据转换操作,这些操作通过一系列的内置函数和自定义函数(UDF,User Defined Functions)来实现。例如,你可以使用Pig Latin来清洗、过滤、聚合、连接等操作日志数据...
例如,LOAD操作用于从HDFS加载数据,FILTER用于筛选满足特定条件的记录,JOIN用于合并来自不同数据源的记录,GROUP BY用于对数据进行分组,然后应用聚合函数(如COUNT、SUM、AVG等)。 Pig的优势在于其灵活性和可...
- **HBase Group-by**:展示如何使用Group-by功能对数据进行分组处理。 - **HBase Expression Filter**:介绍如何使用表达式过滤器进行数据筛选。 - **HBase MultiRow Range Filter**:展示如何使用多行范围过滤...
例如,LOAD用于加载数据,STORE用于保存结果,FOREACH用于迭代数据,GROUP用于分组,JOIN用于连接不同表,FILTER用于筛选数据,ORDER BY用于排序,以及各种内置函数如COUNT、SUM、AVG等用于统计计算。 2. **数据...
例如,`load`用于加载数据,`foreach`用于遍历数据,`filter`用于筛选数据,`group by`用于数据分组,`order by`用于排序,`join`用于数据关联,`generate`用于提取列,`union`和`intersect`用于集合运算,`dump`...
- **灵活性**:除了内置的运算符之外,用户还可以自定义函数来扩展Pig的功能。 **运行模式:** 1. **本地模式**:在这种模式下,Pig运行在单个节点上,不依赖Hadoop集群,适用于小规模数据处理或测试。 2. **...
在这个"mapreduceDemo.zip"压缩包中,我们可以通过一系列的示例深入理解MapReduce的工作原理和关键概念,如自定义分区、排序和分组。这些概念在大数据处理中至关重要,能够优化数据处理性能并确保结果的正确性。 ...
例如,你可以使用 SELECT 语句进行数据检索,JOIN 操作连接不同表,以及 GROUP BY 和聚合函数(如 COUNT, SUM, AVG)进行数据分析。 2. **元数据管理**: Hive 管理着所有表和分区的元数据,这些信息存储在 MySQL 或...
- Combiner适合于具有交换律和结合律的聚合操作,例如max(最大值)、min(最小值)、distinct(去重)、groupby(分组)等。 - 对于平均值(avg)计算的场景,需要进行适当的转换,因为单纯地应用Combiner可能会...
例如,`LOAD`命令用于加载数据,`FILTER`用于过滤记录,`GROUP`用于按字段分组,`JOIN`用于合并数据,`FOREACH`用于迭代数据并应用转换,`DUMP`则用于输出结果。在"programmingpig-master"源码中,我们可以看到这些...
### 高级软件人才培训专家-Hadoop课程资料-5-第五章 - 分布式SQL计算 Hive 语法与概念 #### 知识点概览 本章节主要围绕分布式SQL计算工具——Hive进行深入讲解,包括Hive的基本概念、语法结构以及如何通过Hive对...
- 查询数据:`SELECT category, AVG(pagerank) FROM urls WHERE pagerank > 0.2 GROUP BY category;` 此外,Hive 还支持自定义 MapReduce 脚本,以满足更复杂的计算需求。 **5. Hive 的扩展功能** - **分区...
标题“ADP2grouptask”暗示我们可能在讨论一个与Java编程相关的项目或任务,特别是关于将数据处理或操作分组到特定任务中。这个项目或任务可能涉及使用Java进行批量处理、多线程或者分布式计算。下面我们将深入探讨...
这个过程涉及到了Pig的加载、转换、分组、聚合以及自定义函数的使用。通过这种方式,我们可以利用Pig的大数据处理能力,结合Jieba的高效分词,有效地完成新闻词频统计的任务。在实际操作中,还需注意优化性能,如...
- GroupBy分组:通过`GROUP BY`对数据进行分组聚合。 - 子查询:在查询中嵌套另一个查询语句。 - Join操作:包括`INNER JOIN`、`LEFT JOIN`、`RIGHT JOIN`、`FULL JOIN`以及`LEFT SEMI-JOIN`。 Hive还提供了排序...
例如,`LOAD`命令用于从HDFS或其他数据源加载数据,`FILTER`用于筛选满足特定条件的记录,`GROUP`用于按字段分组数据,`FOREACH`允许对每个分组应用函数,而`JOIN`则用于合并多个数据集。 **在Ubuntu上的安装和配置...
如果我们需要对数据进行自定义的排序,那么我们可以实现 `RawComparator` 接口,并将其设置为 `mapreduce.job.output.key.comparator.class` 或 `mapreduce.job.output.group.comparator.class`。这样,我们就可以...