- 浏览: 614536 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
kangh:
转载的也拿出来 都不试一下 完全错误
Nginx+ffmpeg的HLS开源服务器搭建配置及开发详解 -
wangtxlz:
#cd builders/cmake#cmake .系统提示命 ...
crtmpserver流媒体服务器的介绍与搭建 -
hnraysir:
支持支持支持
手机Android音视频采集与直播推送,实现单兵、移动监控类应用 -
wuent:
把web服务器和php框架绑定到一起?真不建议这样。。。
Swoole(PHP高级Web开发框架) -
wuent:
有更详细的性能比较吗?php,python,java
PHP中的(伪)多线程与多进程
Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。其架构如下图所示:
Spark与Hadoop的对比
Spark的中间数据放到内存中,对于迭代运算效率更高。
Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。
Spark比Hadoop更通用。
Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup,mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。
这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。
不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
容错性
在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。
可用性
Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。
Spark与Hadoop的结合
Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapReduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。
Spark的适用场景
Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
总的来说Spark的适用面比较广泛且比较通用。
运行模式
本地模式
Standalone模式
Mesoes模式
yarn模式
Spark生态系统
Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。
Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。
Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。
在业界的使用
Spark项目在2009年启动,2010年开源, 现在使用的有:Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research & others, 淘宝等,豆瓣也在使用Spark的python克隆版Dpark。
Spark核心概念
Resilient Distributed Dataset (RDD)弹性分布数据集
RDD是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。
RDD的特点:
1. 它是在集群节点上的不可变的、已分区的集合对象。
2. 通过并行转换的方式来创建如(map, filter, join, etc)。
3. 失败自动重建。
4. 可以控制存储级别(内存、磁盘等)来进行重用。
5. 必须是可序列化的。
6. 是静态类型的。
RDD的好处
1. RDD只能从持久存储或通过Transformations操作产生,相比于分布式共享内存(DSM)可以更高效实现容错,对于丢失部分数据分区只需根据它的lineage就可重新计算出来,而不需要做特定的Checkpoint。
2. RDD的不变性,可以实现类Hadoop MapReduce的推测式执行。
3. RDD的数据分区特性,可以通过数据的本地性来提高性能,这与Hadoop MapReduce是一样的。
4. RDD都是可序列化的,在内存不足时可自动降级为磁盘存储,把RDD存储于磁盘上,这时性能会有大的下降但不会差于现在的MapReduce。
RDD的存储与分区
1. 用户可以选择不同的存储级别存储RDD以便重用。
2. 当前RDD默认是存储于内存,但当内存不足时,RDD会spill到disk。
3. RDD在需要进行分区把数据分布于集群中时会根据每条记录Key进行分区(如Hash 分区),以此保证两个数据集在Join时能高效。
RDD的内部表示
在RDD的内部实现中每个RDD都可以使用5个方面的特性来表示:
1. 分区列表(数据块列表)
2. 计算每个分片的函数(根据父RDD计算出此RDD)
3. 对父RDD的依赖列表
4. 对key-value RDD的Partitioner【可选】
5. 每个数据分片的预定义地址列表(如HDFS上的数据块的地址)【可选】
RDD的存储级别
RDD根据useDisk、useMemory、deserialized、replication四个参数的组合提供了11种存储级别:
val NONE = new StorageLevel(false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, 2)
RDD定义了各种操作,不同类型的数据由不同的RDD类抽象表示,不同的操作也由RDD进行抽实现。
RDD的生成
RDD有两种创建方式:
1、从Hadoop文件系统(或与Hadoop兼容的其它存储系统)输入(例如HDFS)创建。
2、从父RDD转换得到新RDD。
下面来看一从Hadoop文件系统生成RDD的方式,如:val file = spark.textFile("hdfs://..."),file变量就是RDD(实际是HadoopRDD实例),生成的它的核心代码如下:
// SparkContext根据文件/目录及可选的分片数创建RDD, 这里我们可以看到Spark与Hadoop MapReduce很像
// 需要InputFormat, Key、Value的类型,其实Spark使用的Hadoop的InputFormat, Writable类型。
def textFile(path: String, minSplits: Int = defaultMinSplits): RDD[String] = {
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable],
classOf[Text], minSplits) .map(pair => pair._2.toString) }
// 根据Hadoop配置,及InputFormat等创建HadoopRDD
new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minSplits)
对RDD进行计算时,RDD从HDFS读取数据时与Hadoop MapReduce几乎一样的:
reader = fmt.getRecordReader(split.inputSplit.value, conf, Reporter.NULL)
val key: K = reader.createKey()
val value: V = reader.createValue()
//使用Hadoop MapReduce的RecordReader读取数据,每个Key、Value对以元组返回。
override def getNext() = {
try {
finished = !reader.next(key, value)
} catch {
case eof: EOFException =>
finished = true
}
(key, value)
}
RDD的转换与操作
对于RDD可以有两种计算方式:转换(返回值还是一个RDD)与操作(返回值不是一个RDD)。
转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。
操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。
下面使用一个例子来示例说明Transformations与Actions在Spark的使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
val sc = new SparkContext(master, "Example", System.getenv("SPARK_HOME"),
Seq(System.getenv("SPARK_TEST_JAR")))
val rdd_A = sc.textFile(hdfs://.....)
val rdd_B = rdd_A.flatMap((line => line.split("\\s+"))).map(word => (word, 1))
val rdd_C = sc.textFile(hdfs://.....)
val rdd_D = rdd_C.map(line => (line.substring(10), 1))
val rdd_E = rdd_D.reduceByKey((a, b) => a + b)
val rdd_F = rdd_B.jion(rdd_E)
rdd_F.saveAsSequenceFile(hdfs://....)
Lineage(血统)
利用内存加快数据加载,在众多的其它的In-Memory类数据库或Cache类系统中也有实现,Spark的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问题时采用的方案。为了保证RDD中数据的鲁棒性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。
RDD在Lineage依赖方面分为两种Narrow Dependencies与Wide Dependencies用来解决数据容错的高效性。Narrow Dependencies是指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。Wide Dependencies是指子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区。对与Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage方法对与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上其祖先追溯看是否可以重试(这就是lineage,血统的意思),Narrow Dependencies对于数据的重算开销要远小于Wide Dependencies的数据重算开销。
容错
在RDD计算,通过checkpint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错,默认是logging the updates方式,通过记录跟踪所有生成RDD的转换(transformations)也就是记录每个RDD的lineage(血统)来重新计算生成丢失的分区数据。
资源管理与作业调度
Spark对于资源管理与作业调度可以使用Standalone(独立模式),Apache Mesos及Hadoop YARN来实现。 Spark on Yarn在Spark0.6时引用,但真正可用是在现在的branch-0.8版本。Spark on Yarn遵循YARN的官方规范实现,得益于Spark天生支持多种Scheduler和Executor的良好设计,对YARN的支持也就非常容易,Spark on Yarn的大致框架图。
让Spark运行于YARN上与Hadoop共用集群资源可以提高资源利用率。
编程接口
Spark通过与编程语言集成的方式暴露RDD的操作,类似于DryadLINQ和FlumeJava,每个数据集都表示为RDD对象,对数据集的操作就表示成对RDD对象的操作。Spark主要的编程语言是Scala,选择Scala是因为它的简洁性(Scala可以很方便在交互式下使用)和性能(JVM上的静态强类型语言)。
Spark和Hadoop MapReduce类似,由Master(类似于MapReduce的Jobtracker)和Workers(Spark的Slave工作节点)组成。用户编写的Spark程序被称为Driver程序,Dirver程序会连接master并定义了对各RDD的转换与操作,而对RDD的转换与操作通过Scala闭包(字面量函数)来表示,Scala使用Java对象来表示闭包且都是可序列化的,以此把对RDD的闭包操作发送到各Workers节点。 Workers存储着数据分块和享有集群内存,是运行在工作节点上的守护进程,当它收到对RDD的操作时,根据数据分片信息进行本地化数据操作,生成新的数据分片、返回结果或把RDD写入存储系统。
Scala
Spark使用Scala开发,默认使用Scala作为编程语言。编写Spark程序比编写Hadoop MapReduce程序要简单的多,SparK提供了Spark-Shell,可以在Spark-Shell测试程序。写SparK程序的一般步骤就是创建或使用(SparkContext)实例,使用SparkContext创建RDD,然后就是对RDD进行操作。如:
C
1
2
3
4
val sc = new SparkContext(master, appName, [sparkHome], [jars])
val textFile = sc.textFile("hdfs://.....")
textFile.map(....).filter(.....).....
Java
Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装。如:
1
2
3
4
5
6
7
8
9
10
JavaSparkContext sc = new JavaSparkContext(...);
JavaRDD lines = ctx.textFile("hdfs://...");
JavaRDD words = lines.flatMap(
new FlatMapFunction<String, String>() {
public Iterable call(String s) {
return Arrays.asList(s.split(" "));
}
}
);
Python
现在Spark也提供了Python编程接口,Spark使用py4j来实现python与java的互操作,从而实现使用python编写Spark程序。Spark也同样提供了pyspark,一个Spark的python shell,可以以交互式的方式使用Python编写Spark程序。 如:
C
1
2
3
4
5
from pyspark import SparkContext
sc = SparkContext("local", "Job Name", pyFiles=['MyFile.py', 'lib.zip', 'app.egg'])
words = sc.textFile("/usr/share/dict/words")
words.filter(lambda w: w.startswith("spar")).take(5)
使用示例
Standalone模式
为方便Spark的推广使用,Spark提供了Standalone模式,Spark一开始就设计运行于Apache Mesos资源管理框架上,这是非常好的设计,但是却带了部署测试的复杂性。为了让Spark能更方便的部署和尝试,Spark因此提供了Standalone运行模式,它由一个Spark Master和多个Spark worker组成,与Hadoop MapReduce1很相似,就连集群启动方式都几乎是一样。
以Standalone模式运行Spark集群
下载Scala2.9.3,并配置SCALA_HOME
下载Spark代码(可以使用源码编译也可以下载编译好的版本)这里下载 编译好的版本(http://spark-project.org/download/spark-0.7.3-prebuilt-cdh4.tgz)
解压spark-0.7.3-prebuilt-cdh4.tgz安装包
修改配置(conf/*) slaves: 配置工作节点的主机名 spark-env.sh:配置环境变量。
1
2
3
4
5
6
7
8
9
10
SCALA_HOME=/home/spark/scala-2.9.3
JAVA_HOME=/home/spark/jdk1.6.0_45
SPARK_MASTER_IP=spark1
SPARK_MASTER_PORT=30111
SPARK_MASTER_WEBUI_PORT=30118
SPARK_WORKER_CORES=2 SPARK_WORKER_MEMORY=4g
SPARK_WORKER_PORT=30333
SPARK_WORKER_WEBUI_PORT=30119
SPARK_WORKER_INSTANCES=1
把Hadoop配置copy到conf目录下
在master主机上对其它机器做ssh无密码登录
把配置好的Spark程序使用scp copy到其它机器
在master启动集群
1
2
$SPARK_HOME/start-all.sh
Spark-shell现在还不支持Yarn模式,使用Yarn模式运行,需要把Spark程序全部打包成一个jar包提交到Yarn上运行。目录只有branch-0.8版本才真正支持Yarn。
以Yarn模式运行Spark
下载Spark代码.
2
git clone git://github.com/mesos/spark
切换到branch-0.8
1
2
3
cd spark
git checkout -b yarn --track origin/yarn
使用sbt编译Spark并
C
1
2
3
4
$SPARK_HOME/sbt/sbt
> package
> assembly
把Hadoop yarn配置copy到conf目录下
运行测试
C
1
2
3
4
SPARK_JAR=./core/target/scala-2.9.3/spark-core-assembly-0.8.0-SNAPSHOT.jar \
./run spark.deploy.yarn.Client --jar examples/target/scala-2.9.3/ \
--class spark.examples.SparkPi --args yarn-standalone
使用Spark-shell
Spark-shell使用很简单,当Spark以Standalon模式运行后,使用$SPARK_HOME/spark-shell进入shell即可,在Spark-shell中SparkContext已经创建好了,实例名为sc可以直接使用,还有一个需要注意的是,在Standalone模式下,Spark默认使用的调度器的FIFO调度器而不是公平调度,而Spark-shell作为一个Spark程序一直运行在Spark上,其它的Spark程序就只能排队等待,也就是说同一时间只能有一个Spark-shell在运行。
在Spark-shell上写程序非常简单,就像在Scala Shell上写程序一样。
1
2
3
4
5
6
7
8
9
scala> val textFile = sc.textFile("hdfs://hadoop1:2323/user/data")
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3
scala> textFile.count() // Number of items in this RDD
res0: Long = 21374
scala> textFile.first() // First item in this RDD
res1: String = # Spark
编写Driver程序
在Spark中Spark程序称为Driver程序,编写Driver程序很简单几乎与在Spark-shell上写程序是一样的,不同的地方就是SparkContext需要自己创建。如WorkCount程序如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import spark.SparkContext
import SparkContext._
object WordCount {
def main(args: Array[String]) {
if (args.length ==0 ){
println("usage is org.test.WordCount <master>")
}
println("the args: ")
args.foreach(println)
val hdfsPath = "hdfs://hadoop1:8020"
// create the SparkContext, args(0)由yarn传入appMaster地址
val sc = new SparkContext(args(0), "WrodCount",
System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))
val textFile = sc.textFile(hdfsPath + args(1))
val result = textFile.flatMap(line => line.split("\\s+"))
.map(word => (word, 1)).reduceByKey(_ + _)
result.saveAsTextFile(hdfsPath + args(2))
}
}
原文出处:http://tech.uc.cn/?p=2116
Spark与Hadoop的对比
Spark的中间数据放到内存中,对于迭代运算效率更高。
Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。
Spark比Hadoop更通用。
Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup,mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。
这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。
不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
容错性
在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。
可用性
Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。
Spark与Hadoop的结合
Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapReduce运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。
Spark的适用场景
Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
总的来说Spark的适用面比较广泛且比较通用。
运行模式
本地模式
Standalone模式
Mesoes模式
yarn模式
Spark生态系统
Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapReduce。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。
Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。
Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。
在业界的使用
Spark项目在2009年启动,2010年开源, 现在使用的有:Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research & others, 淘宝等,豆瓣也在使用Spark的python克隆版Dpark。
Spark核心概念
Resilient Distributed Dataset (RDD)弹性分布数据集
RDD是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现。RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现。RDD必须是可序列化的。RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作。这对于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。
RDD的特点:
1. 它是在集群节点上的不可变的、已分区的集合对象。
2. 通过并行转换的方式来创建如(map, filter, join, etc)。
3. 失败自动重建。
4. 可以控制存储级别(内存、磁盘等)来进行重用。
5. 必须是可序列化的。
6. 是静态类型的。
RDD的好处
1. RDD只能从持久存储或通过Transformations操作产生,相比于分布式共享内存(DSM)可以更高效实现容错,对于丢失部分数据分区只需根据它的lineage就可重新计算出来,而不需要做特定的Checkpoint。
2. RDD的不变性,可以实现类Hadoop MapReduce的推测式执行。
3. RDD的数据分区特性,可以通过数据的本地性来提高性能,这与Hadoop MapReduce是一样的。
4. RDD都是可序列化的,在内存不足时可自动降级为磁盘存储,把RDD存储于磁盘上,这时性能会有大的下降但不会差于现在的MapReduce。
RDD的存储与分区
1. 用户可以选择不同的存储级别存储RDD以便重用。
2. 当前RDD默认是存储于内存,但当内存不足时,RDD会spill到disk。
3. RDD在需要进行分区把数据分布于集群中时会根据每条记录Key进行分区(如Hash 分区),以此保证两个数据集在Join时能高效。
RDD的内部表示
在RDD的内部实现中每个RDD都可以使用5个方面的特性来表示:
1. 分区列表(数据块列表)
2. 计算每个分片的函数(根据父RDD计算出此RDD)
3. 对父RDD的依赖列表
4. 对key-value RDD的Partitioner【可选】
5. 每个数据分片的预定义地址列表(如HDFS上的数据块的地址)【可选】
RDD的存储级别
RDD根据useDisk、useMemory、deserialized、replication四个参数的组合提供了11种存储级别:
val NONE = new StorageLevel(false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, 2)
RDD定义了各种操作,不同类型的数据由不同的RDD类抽象表示,不同的操作也由RDD进行抽实现。
RDD的生成
RDD有两种创建方式:
1、从Hadoop文件系统(或与Hadoop兼容的其它存储系统)输入(例如HDFS)创建。
2、从父RDD转换得到新RDD。
下面来看一从Hadoop文件系统生成RDD的方式,如:val file = spark.textFile("hdfs://..."),file变量就是RDD(实际是HadoopRDD实例),生成的它的核心代码如下:
// SparkContext根据文件/目录及可选的分片数创建RDD, 这里我们可以看到Spark与Hadoop MapReduce很像
// 需要InputFormat, Key、Value的类型,其实Spark使用的Hadoop的InputFormat, Writable类型。
def textFile(path: String, minSplits: Int = defaultMinSplits): RDD[String] = {
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable],
classOf[Text], minSplits) .map(pair => pair._2.toString) }
// 根据Hadoop配置,及InputFormat等创建HadoopRDD
new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minSplits)
对RDD进行计算时,RDD从HDFS读取数据时与Hadoop MapReduce几乎一样的:
reader = fmt.getRecordReader(split.inputSplit.value, conf, Reporter.NULL)
val key: K = reader.createKey()
val value: V = reader.createValue()
//使用Hadoop MapReduce的RecordReader读取数据,每个Key、Value对以元组返回。
override def getNext() = {
try {
finished = !reader.next(key, value)
} catch {
case eof: EOFException =>
finished = true
}
(key, value)
}
RDD的转换与操作
对于RDD可以有两种计算方式:转换(返回值还是一个RDD)与操作(返回值不是一个RDD)。
转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。
操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。
下面使用一个例子来示例说明Transformations与Actions在Spark的使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
val sc = new SparkContext(master, "Example", System.getenv("SPARK_HOME"),
Seq(System.getenv("SPARK_TEST_JAR")))
val rdd_A = sc.textFile(hdfs://.....)
val rdd_B = rdd_A.flatMap((line => line.split("\\s+"))).map(word => (word, 1))
val rdd_C = sc.textFile(hdfs://.....)
val rdd_D = rdd_C.map(line => (line.substring(10), 1))
val rdd_E = rdd_D.reduceByKey((a, b) => a + b)
val rdd_F = rdd_B.jion(rdd_E)
rdd_F.saveAsSequenceFile(hdfs://....)
Lineage(血统)
利用内存加快数据加载,在众多的其它的In-Memory类数据库或Cache类系统中也有实现,Spark的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问题时采用的方案。为了保证RDD中数据的鲁棒性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中演变过来的。相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。
RDD在Lineage依赖方面分为两种Narrow Dependencies与Wide Dependencies用来解决数据容错的高效性。Narrow Dependencies是指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。Wide Dependencies是指子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区。对与Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage方法对与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上其祖先追溯看是否可以重试(这就是lineage,血统的意思),Narrow Dependencies对于数据的重算开销要远小于Wide Dependencies的数据重算开销。
容错
在RDD计算,通过checkpint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错,默认是logging the updates方式,通过记录跟踪所有生成RDD的转换(transformations)也就是记录每个RDD的lineage(血统)来重新计算生成丢失的分区数据。
资源管理与作业调度
Spark对于资源管理与作业调度可以使用Standalone(独立模式),Apache Mesos及Hadoop YARN来实现。 Spark on Yarn在Spark0.6时引用,但真正可用是在现在的branch-0.8版本。Spark on Yarn遵循YARN的官方规范实现,得益于Spark天生支持多种Scheduler和Executor的良好设计,对YARN的支持也就非常容易,Spark on Yarn的大致框架图。
让Spark运行于YARN上与Hadoop共用集群资源可以提高资源利用率。
编程接口
Spark通过与编程语言集成的方式暴露RDD的操作,类似于DryadLINQ和FlumeJava,每个数据集都表示为RDD对象,对数据集的操作就表示成对RDD对象的操作。Spark主要的编程语言是Scala,选择Scala是因为它的简洁性(Scala可以很方便在交互式下使用)和性能(JVM上的静态强类型语言)。
Spark和Hadoop MapReduce类似,由Master(类似于MapReduce的Jobtracker)和Workers(Spark的Slave工作节点)组成。用户编写的Spark程序被称为Driver程序,Dirver程序会连接master并定义了对各RDD的转换与操作,而对RDD的转换与操作通过Scala闭包(字面量函数)来表示,Scala使用Java对象来表示闭包且都是可序列化的,以此把对RDD的闭包操作发送到各Workers节点。 Workers存储着数据分块和享有集群内存,是运行在工作节点上的守护进程,当它收到对RDD的操作时,根据数据分片信息进行本地化数据操作,生成新的数据分片、返回结果或把RDD写入存储系统。
Scala
Spark使用Scala开发,默认使用Scala作为编程语言。编写Spark程序比编写Hadoop MapReduce程序要简单的多,SparK提供了Spark-Shell,可以在Spark-Shell测试程序。写SparK程序的一般步骤就是创建或使用(SparkContext)实例,使用SparkContext创建RDD,然后就是对RDD进行操作。如:
C
1
2
3
4
val sc = new SparkContext(master, appName, [sparkHome], [jars])
val textFile = sc.textFile("hdfs://.....")
textFile.map(....).filter(.....).....
Java
Spark支持Java编程,但对于使用Java就没有了Spark-Shell这样方便的工具,其它与Scala编程是一样的,因为都是JVM上的语言,Scala与Java可以互操作,Java编程接口其实就是对Scala的封装。如:
1
2
3
4
5
6
7
8
9
10
JavaSparkContext sc = new JavaSparkContext(...);
JavaRDD lines = ctx.textFile("hdfs://...");
JavaRDD words = lines.flatMap(
new FlatMapFunction<String, String>() {
public Iterable call(String s) {
return Arrays.asList(s.split(" "));
}
}
);
Python
现在Spark也提供了Python编程接口,Spark使用py4j来实现python与java的互操作,从而实现使用python编写Spark程序。Spark也同样提供了pyspark,一个Spark的python shell,可以以交互式的方式使用Python编写Spark程序。 如:
C
1
2
3
4
5
from pyspark import SparkContext
sc = SparkContext("local", "Job Name", pyFiles=['MyFile.py', 'lib.zip', 'app.egg'])
words = sc.textFile("/usr/share/dict/words")
words.filter(lambda w: w.startswith("spar")).take(5)
使用示例
Standalone模式
为方便Spark的推广使用,Spark提供了Standalone模式,Spark一开始就设计运行于Apache Mesos资源管理框架上,这是非常好的设计,但是却带了部署测试的复杂性。为了让Spark能更方便的部署和尝试,Spark因此提供了Standalone运行模式,它由一个Spark Master和多个Spark worker组成,与Hadoop MapReduce1很相似,就连集群启动方式都几乎是一样。
以Standalone模式运行Spark集群
下载Scala2.9.3,并配置SCALA_HOME
下载Spark代码(可以使用源码编译也可以下载编译好的版本)这里下载 编译好的版本(http://spark-project.org/download/spark-0.7.3-prebuilt-cdh4.tgz)
解压spark-0.7.3-prebuilt-cdh4.tgz安装包
修改配置(conf/*) slaves: 配置工作节点的主机名 spark-env.sh:配置环境变量。
1
2
3
4
5
6
7
8
9
10
SCALA_HOME=/home/spark/scala-2.9.3
JAVA_HOME=/home/spark/jdk1.6.0_45
SPARK_MASTER_IP=spark1
SPARK_MASTER_PORT=30111
SPARK_MASTER_WEBUI_PORT=30118
SPARK_WORKER_CORES=2 SPARK_WORKER_MEMORY=4g
SPARK_WORKER_PORT=30333
SPARK_WORKER_WEBUI_PORT=30119
SPARK_WORKER_INSTANCES=1
把Hadoop配置copy到conf目录下
在master主机上对其它机器做ssh无密码登录
把配置好的Spark程序使用scp copy到其它机器
在master启动集群
1
2
$SPARK_HOME/start-all.sh
Spark-shell现在还不支持Yarn模式,使用Yarn模式运行,需要把Spark程序全部打包成一个jar包提交到Yarn上运行。目录只有branch-0.8版本才真正支持Yarn。
以Yarn模式运行Spark
下载Spark代码.
2
git clone git://github.com/mesos/spark
切换到branch-0.8
1
2
3
cd spark
git checkout -b yarn --track origin/yarn
使用sbt编译Spark并
C
1
2
3
4
$SPARK_HOME/sbt/sbt
> package
> assembly
把Hadoop yarn配置copy到conf目录下
运行测试
C
1
2
3
4
SPARK_JAR=./core/target/scala-2.9.3/spark-core-assembly-0.8.0-SNAPSHOT.jar \
./run spark.deploy.yarn.Client --jar examples/target/scala-2.9.3/ \
--class spark.examples.SparkPi --args yarn-standalone
使用Spark-shell
Spark-shell使用很简单,当Spark以Standalon模式运行后,使用$SPARK_HOME/spark-shell进入shell即可,在Spark-shell中SparkContext已经创建好了,实例名为sc可以直接使用,还有一个需要注意的是,在Standalone模式下,Spark默认使用的调度器的FIFO调度器而不是公平调度,而Spark-shell作为一个Spark程序一直运行在Spark上,其它的Spark程序就只能排队等待,也就是说同一时间只能有一个Spark-shell在运行。
在Spark-shell上写程序非常简单,就像在Scala Shell上写程序一样。
1
2
3
4
5
6
7
8
9
scala> val textFile = sc.textFile("hdfs://hadoop1:2323/user/data")
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3
scala> textFile.count() // Number of items in this RDD
res0: Long = 21374
scala> textFile.first() // First item in this RDD
res1: String = # Spark
编写Driver程序
在Spark中Spark程序称为Driver程序,编写Driver程序很简单几乎与在Spark-shell上写程序是一样的,不同的地方就是SparkContext需要自己创建。如WorkCount程序如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import spark.SparkContext
import SparkContext._
object WordCount {
def main(args: Array[String]) {
if (args.length ==0 ){
println("usage is org.test.WordCount <master>")
}
println("the args: ")
args.foreach(println)
val hdfsPath = "hdfs://hadoop1:8020"
// create the SparkContext, args(0)由yarn传入appMaster地址
val sc = new SparkContext(args(0), "WrodCount",
System.getenv("SPARK_HOME"), Seq(System.getenv("SPARK_TEST_JAR")))
val textFile = sc.textFile(hdfsPath + args(1))
val result = textFile.flatMap(line => line.split("\\s+"))
.map(word => (word, 1)).reduceByKey(_ + _)
result.saveAsTextFile(hdfsPath + args(2))
}
}
原文出处:http://tech.uc.cn/?p=2116
发表评论
-
京东个性化推荐系统持续优化的奥秘
2015-04-20 11:03 0京东基于大数据和个性化推荐算法,实现了向不同用户展示不同的内 ... -
大数据架构:flume-ng+Kafka+Storm+HDFS 实时系统组合
2015-02-01 23:26 1767大数据我们都知道hadoop ... -
“大数据” Hadoop,Spark和Storm
2015-01-25 21:56 1695大数据(Big Data) 大数 ... -
基于Storm的Nginx log实时监控系统
2015-01-25 21:53 857背景 UAE(UC App Engine)是 ... -
大数据” Hadoop,Spark和Storm
2015-01-14 23:27 721大数据(Big Data) 大数 ...
相关推荐
这篇入门资料将引导我们了解如何利用Hadoop进行分布式计算。 一、Hadoop概述 Hadoop的核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。HDFS是一种分布式文件系统,能够存储大量数据并保证其高可用...
总之,Spark是一个高性能、灵活且通用的分布式计算系统,尤其适合需要迭代计算和高效内存管理的大数据应用场景。其丰富的API、高效的数据处理模型和与Hadoop的良好集成,使其成为大数据领域的重要工具。
5. **索引构建**:索引是搜索系统的核心,基于Hadoop的分布式搜索系统会使用分布式索引构建算法,如LSI(Latent Semantic Indexing)或TF-IDF,将文档内容转换为高效的检索结构。 6. **查询处理**:查询处理通常...
综上所述,基于Hadoop的分布式对象存储系统充分利用了Hadoop的分布式计算能力,实现了大规模、高可用的数据存储,为人工智能等大数据应用提供了坚实的基础。通过深入理解Hadoop的原理和实践,开发者可以构建出更高效...
Hadoop作为一款开源的分布式计算框架,以其强大的处理能力与高可扩展性,成为了应对这一挑战的关键工具。本文将深入探讨Hadoop在分布式云存储系统中的应用及其核心组件——Hadoop分布式文件系统(HDFS)。 Hadoop是...
Hadoop生态系统中集成了多种分布式计算模型,其中Spark和Hama是两种主要的计算模型。Spark是一个内存计算框架,适用于迭代计算和快速数据处理,它能够显著提高计算速度,因为不需要将中间计算结果写入磁盘。而Hama则...
项目涵盖了UDP通信、RMI远程调用、Spark数据处理和Hadoop MapReduce等多个技术领域,具体包括多线程计算、图书管理系统、天气数据获取、父子关系数据处理和学生成绩计算等功能。 ## 项目的主要特性和功能 1. 多...
【标题】基于Hadoop的分布式文件系统通过Java实现的本地文件管理系统,将文件存储在HDFS集群中,展示了Hadoop的高效数据处理能力和Java在大数据领域的应用。 【内容详解】 Hadoop是Apache软件基金会开发的一个开源...
Hadoop提供了分布式存储(HDFS)和分布式计算(MapReduce)的能力,而Spark则是在Hadoop之上构建的一个快速、通用且可扩展的数据处理引擎。在单机环境中进行伪分布式配置,可以让我们在一台计算机上模拟多节点集群的...
基于Hadoop的分布式服务注册中心的研究与实现是一个深入探讨如何在大规模分布式系统中高效、可靠地管理和定位服务的重要课题。这一研究聚焦于利用Hadoop生态系统的强大能力来构建一个能够支持高并发、高可用的服务...
Hadoop 是一个开源框架,专为处理和存储大量数据而设计,它支持分布式并行编程模型,使得在大规模数据集上运行计算变得高效且可扩展。Hadoop 的核心由两个主要组件组成:Hadoop 分布式文件系统(HDFS)和 MapReduce ...
Hadoop是一个开源的分布式计算框架,由Apache基金会开发,主要用于处理和存储大规模数据。这个框架的核心组件包括Hadoop分布式文件系统(HDFS)、MapReduce和YARN(Yet Another Resource Negotiator)。Hadoop的设计...
1. **并行与分布式计算的区别**:并行计算通常在同一系统内的多处理器间进行,而分布式计算则跨越不同网络的独立系统。理解这两者的差异对于选择合适的计算模型至关重要。 2. **负载均衡**:在分布式系统中,确保...
Spark与Hadoop的关系在于,Hadoop是大数据处理领域的一个基石,提供了分布式存储(HDFS)和分布式计算(MapReduce)框架。但Spark并不局限于Hadoop生态系统,它可以与多种数据源集成,如Amazon S3、Cassandra、HBase...
Spark-assembly-1.5.2-hadoop2.6.0.jar中的优化包括RDD(弹性分布式数据集)的缓存策略、Task调度优化、内存管理优化等,以确保在大数据处理中实现高效的性能。 7. 开发和调试: 开发者在本地开发时,可以直接...
数据挖掘功能可以通过Hadoop生态系统中的Mahout(机器学习库)或Spark(内存计算框架)等工具实现。 5. 文本搜索与数据可视化 在地质环境大数据框架中,文本搜索功能能够快速定位文档中的相关信息。这可以借助于...
在IT领域,大数据处理是一个重要的方向,而Hadoop作为开源的大数据处理框架,因其高效、可靠的分布式计算能力而被广泛采用。本篇文章将详细介绍如何在Windows操作系统环境下,对Hadoop进行编译并设置一个单机上的伪...
该系统的设计充分利用了Hadoop的分布式处理能力,结合了Lucene框架的全文索引功能和Solr的企业级检索特性,以及SparkStreaming的实时数据处理优势,形成了一个能够提供企业级智能云检索服务的高效系统。通过这样的...
6. **Spark R**:针对R语言用户的接口,允许R程序员利用Spark的分布式计算能力。 在Hadoop 2.7环境下运行Spark,意味着Spark可以与Hadoop的YARN资源管理系统或Hadoop的HDFS文件系统无缝集成。用户可以通过配置Spark...