近段时间来,一直在忙于一个创业项目.从市场调查分析到技术实现遇到不少困难,其间我也感叹创业的艰难.
创业的困难有许多方面,技术是一个方面,人才是一个方面,资金是一个方面,政策也很重要,以及要对这个领域的全面把握分析调查又是一个方面.对于我这样一个经验不足的人来说,这每一项无疑都是可怕的挑战.
不过我绝得自己还是一个不会轻易放弃的人,所以这段时间艰难的走过来也没有想过放弃.相反,我学到了许许多多知识和经验.
不过,意志和坚定或许很重要,但有许许多多的事情是意志无法做到的.这段时间技术上就遇到不少困难,虽然我在尝试去一个一个解决,但是她仍然使我有些灰心.
有句话是这么说的:年轻时候的失败比老年时候的成功更重要.或者失败是成功之母.这些表明的不是经历失败就OK了,真正想说的是,只有困难才能让你学到知识.只有去解决一个一个的困难,等这个困难解决后才会学到新的知识.而仅仅是运用已有的知识,那最多是使你技术更加熟练,而不会使你更加进步.
而有时,困难会使你去努力想办法解决,在解决问题的过程中或许你会有意外的收获.
我正是在解决一个个困难中,发现了本文的主题.
传统创业公司都是集中人员的,有明确的创业团队,这些团队成员本身是相互比较熟悉的,而且多在一起开发,面对面讨论.这当然是好的,总不能和不认识的人一起工作,也不能在qq上随便找个朋友作为自己的伴侣,还是对自己比较熟悉的人比较放心,何况公司创业涉及到商业机密.
这无可厚非,但遇到下面的情况怎么办:
1,没有资金
2,周围不能找到足够的或则合适的人员
3,每个成员都不可能抽出全部的精力来做创业的事情.因为创业不是会十足成功的,工作还不能放弃.
4,也不能招聘人员,因为不是一家公司,你不可能给人家3年的合同,因为你可能不到2个月就失败收场了.
.......
而相反经常有些这样的事情:
有一些网络上的有共同兴趣的朋友,他们平时工作之余也愿意做点其它的事情,或则参与一些对以后发展有利的事情,但是他们不能放弃目前的工作.
我们正是遇到上诉困难和现实,在我们初始的2人创业团队中,另一个始终抽不出时间,我一个人技术不好,经验不足,精力有限,又缺乏资金让别人做.而恰好我的群里有第二种类型的人,于是很自然的,我就想到了这种模式
这种模式我暂且叫做基于网络的开放的创业团队组织
我们目前的设想是确定一个项目后,通过网络搜寻到对这个项目用共同兴趣,技术基础的人,这是很好解决的.然后通过组织这样一个分散的团队,通过网络来协同做这个项目.
实现上可能是其中一个或几个人负责组织项目规划和监督进度,团队所有成员基于网络共同协作和同步.目前我们正在尝试,也正在寻找好的合作模式.
创业是每个有理想和激情的人的共同兴趣,每个人都愿意在自己擅长的领域做点不同寻常的事情,但是不是每个人都有这个机会,有这个能力,经验,时间。或则有的只是想业余参与玩玩而已,本身的工作和地位已经比较满意。这样每个人的情况都不同,现实中有许多情况,那么这应该允许任何事情的可能。
1, 基于网络的开发的创业团队组织可以更好的利用人力资源,虽然周围的朋友可靠,但周围的朋友不一定是最合适的人选,事实上通过网络找到的也许是跟有兴趣和最合适的.再加上周围没有好的人选就更要这样
2,基于网络的开发的创业团队组织可以更好的利用每个成员的时间,前面说过不是每个人都有那么多时间,现实生活中也不是每个人都能放弃工作来创业,这样一旦失败就麻烦了,所以这种方式可以使我们一边工作一边创业
3,这样组织起来的团队可能是个技术更全面的团队,这可以召集到各种各样的人才.
4,推广渠道更广,每个人分布在不同地方,在不同的公司,不同的领域,推广的渠道自然多种多样.而且采取的方式也有多种选择
5,风险更小,即使失败了,每个人没有因为这个放弃工作,还可以继续工作,只是花了些业余时间,分到每个人的风险就小得多.
当然这种全新的方式需要一种好的模式,我们正在探索,任何事情都应该有存在的理由,只是需要好的方式,当今的信息领域许多已经基于网络或则依赖于网络,那么基于网络的创业团队组织何尝没有前景呢
不管怎么样,我觉得这至少是一种创新,我愿意去努力尝试.集大众的智慧,充分利用网络,这就是我所看好的
分享到:
相关推荐
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1
房地产 -可视化管理课件.ppt
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文探讨了电动汽车(EV)对IEEE 33节点电网的影响,特别是汽车负荷预测与节点潮流网损、压损计算。通过蒙特卡洛算法模拟电动汽车负荷的时空特性,研究了四种不同场景下电动汽车接入电网的影响。具体包括:负荷接入前后的网损与电压计算、不同节点接入时的变化、不同时段充电的影响以及不同负荷大小对电网的影响。通过这些分析,揭示了电动汽车充电行为对电网的具体影响机制,为未来的电网规划和优化提供了重要参考。 适合人群:从事电力系统研究的专业人士、电网规划工程师、电动汽车行业从业者、能源政策制定者。 使用场景及目标:①评估电动汽车大规模接入对现有电网基础设施的压力;②优化电动汽车充电设施的布局和运营策略;③为相关政策和技术标准的制定提供科学依据。 其他说明:文中提供的Python代码片段用于辅助理解和验证理论分析,实际应用中需要更复杂的模型和详细的电网参数。
房地产 -【万科经典-第五园】第五园产品推介会.ppt
稳压器件.SchLib
1
模拟符号.SCHLIB
内容概要:本文详细介绍了如何在Simulink中构建并仿真三相电压型逆变器的SPWM调制和电压单闭环控制系统。首先,搭建了由六个IGBT组成的三相全桥逆变电路,并设置了LC滤波器和1000V直流电源。接着,利用PWM Generator模块生成SPWM波形,设置载波频率为2kHz,调制波为50Hz工频正弦波。为了实现精确的电压控制,采用了abc/dq变换将三相电压信号转换到旋转坐标系,并通过锁相环(PLL)进行同步角度跟踪。电压闭环控制使用了带有抗饱和处理的PI调节器,确保输出电压稳定。此外,文中还讨论了标幺值处理方法及其优势,以及如何通过FFT分析验证输出波形的质量。 适用人群:电力电子工程师、自动化控制专业学生、从事逆变器研究的技术人员。 使用场景及目标:适用于希望深入了解三相电压型逆变器控制原理和技术实现的研究人员和工程师。主要目标是掌握SPWM调制技术和电压单闭环控制的设计与调试方法,提高系统的稳定性和效率。 其他说明:文中提供了详细的建模步骤和参数设置指南,帮助读者快速上手并在实践中不断优化模型性能。同时,强调了一些常见的调试技巧和注意事项,如载波频率的选择、积分器防饱和处理等。
【蓝桥杯EDA】客观题解析
房地产 -物业 苏州设备房管理标准.ppt
3
房地产 -2024H1房地产市场总结与展望(新房篇).docx
内容概要:本文详细介绍了利用LabVIEW与PLC进行自动化数据交互的技术方案,涵盖参数管理、TCP通信、串口扫描、数据转移等方面。首先,通过配置文件(INI)实现参数的自动加载与保存,确保参数修改不影响程序运行。其次,在TCP通信方面采用异步模式和心跳包设计,增强通信稳定性,并加入CRC16校验避免数据丢失。对于串口扫描,则通过VISA配置实现状态触发,确保进出站检测的准确性。最后,针对不同类型的数据转移提出具体方法,如TDMS文件存储策略,确保高效可靠的数据处理。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉LabVIEW和PLC编程的从业者。 使用场景及目标:适用于需要将LabVIEW作为上位机与PLC进行数据交互的工业生产线环境,旨在提高系统的自动化程度、稳定性和易维护性。 其他说明:文中提供了多个实用代码片段和注意事项,帮助读者更好地理解和应用相关技术。
d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a
内容概要:本文档《NISP&CISP考试题库.pdf》汇集了大量关于信息安全专业领域的练习题,涵盖风险评估、安全策略、访问控制、恶意代码防范、加密技术、安全模型等多个方面。文档通过选择题的形式探讨了信息安全保障、风险管理和技术实施等核心内容,强调了信息安全保障的动态性和持续性,以及信息安全管理体系(ISMS)的重要性。文档还详细介绍了多种安全技术和标准,如ISO27001、GB/T 22080、SSE-CMM、CC标准等,并通过具体案例和场景分析,帮助读者理解如何在实际环境中应用这些标准和技术。 适用人群:文档适用于信息安全领域的从业者,尤其是准备参加NISP(国家信息安全水平考试)和CISP(注册信息安全专业人员)认证考试的考生,以及从事信息安全管理工作、对信息安全有兴趣的技术人员。 使用场景及目标:①帮助考生系统复习信息安全领域的基础知识和技能,为考试做准备;②为企业内部信息安全培训提供参考资料;③加深信息安全从业人员对安全标准和技术的理解,提升其在实际工作中的应用能力;④帮助信息安全管理者了解如何构建和维护有效的信息安全管理体系。 其他说明:文档不仅提供了理论知识,还结合了实际案例,有助于读者理解信息安全的复杂性和多样性。文档强调了信息安全的多层次、多维度特性,指出信息安全不仅依赖于技术手段,还需要结合管理措施和人员培训。此外,文档中的题目设计贴近实际工作场景,能够有效提升读者应对信息安全挑战的能力。
3dmax插件K_Tools.v2.6
内容概要:“华中杯”是由华中地区高校或相关机构举办的数学建模竞赛,旨在培养学生的创新能力和团队合作精神。比赛主要面向全国高校在校生(以本科生为主,部分赛事允许研究生参加),采用团队赛形式(3人一组),参赛队伍需在72小时内完成建模、编程及论文写作。竞赛一般在每年4月或5月举行,设有多个奖项,具体比例根据参赛队伍数量确定。; 适合人群:对数学建模感兴趣并希望提升自身能力的全国高校在校生(本科生为主,部分赛事允许研究生参加)。; 使用场景及目标:①帮助学生了解数学建模竞赛的形式与流程;②为参赛者提供备赛建议,如学习往届真题、掌握Matlab、Python、LaTeX等工具以及明确团队分工;③鼓励学生关注官方通知,确保获取最新赛程和规则信息。; 其他说明:2025年的具体赛程、规则可能会有所调整,请以“华中杯数学建模竞赛官网”或主办方通知为准。可通过学校数学系或相关社团获取报名信息。