package com.pskfire.binTreeExample;
// tree.java
// demonstrates binary tree
// to run this program: C>java TreeApp
import java.io.*;
import java.util.*; // for Stack class
////////////////////////////////////////////////////////////////
class Node {
public int iData; // data item (key)
public double dData; // data item
public Node leftChild; // this node's left child
public Node rightChild; // this node's right child
public void displayNode() // display ourself
{
System.out.print('{');
System.out.print(iData);
System.out.print(", ");
System.out.print(dData);
System.out.print("} ");
}
} // end class Node
// //////////////////////////////////////////////////////////////
class Tree {
private Node root; // first node of tree
// -------------------------------------------------------------
public Tree() // constructor
{
root = null;
} // no nodes in tree yet
// -------------------------------------------------------------
public Node find(int key) // find node with given key
{ // (assumes non-empty tree)
Node current = root; // start at root
while (current.iData != key) // while no match,
{
if (key < current.iData) // go left?
current = current.leftChild;
else
// or go right?
current = current.rightChild;
if (current == null) // if no child,
return null; // didn't find it
}
return current; // found it
} // end find()
public Node find2(int key) {
Node current = root;
while(current.iData != key) {
if(key < current.iData) {
current = current.leftChild;
} else {
current = current.rightChild;
}
if(current == null) {
return null;
}
}
return current;
}
// -------------------------------------------------------------
public void insert(int id, double dd) {
Node newNode = new Node(); // make new node
newNode.iData = id; // insert data
newNode.dData = dd;
if (root == null) // no node in root
root = newNode;
else // root occupied
{
Node current = root; // start at root
Node parent;
while (true) // (exits internally)
{
parent = current;
if (id < current.iData) // go left?
{
current = current.leftChild;
if (current == null) // if end of the line,
{ // insert on left
parent.leftChild = newNode;
return;
}
} // end if go left
else // or go right?
{
current = current.rightChild;
if (current == null) // if end of the line
{ // insert on right
parent.rightChild = newNode;
return;
}
} // end else go right
} // end while
} // end else not root
} // end insert()
public void insert2(int id, double dd) {
Node newNode = new Node();
newNode.iData = id;
newNode.dData = dd;
if(root == null) {
root = newNode;
} else {
Node current = root;
Node parent;
while (true) {
parent = current;
if(id < current.iData) {
current = current.leftChild;
if(current == null) {
parent.leftChild = newNode;
return;
}
} else {
current = current.rightChild;
if(current == null) {
parent.rightChild = newNode;
return;
}
}
}
}
}
// -------------------------------------------------------------
public boolean delete(int key) // delete node with given key
{ // (assumes non-empty list)
Node current = root;
Node parent = root;
boolean isLeftChild = true;
while (current.iData != key) // search for node
{
parent = current;
if (key < current.iData) // go left?
{
isLeftChild = true;
current = current.leftChild;
} else // or go right?
{
isLeftChild = false;
current = current.rightChild;
}
if (current == null) // end of the line,
return false; // didn't find it
} // end while
// found node to delete
// if no children, simply delete it
if (current.leftChild == null && current.rightChild == null) {
if (current == root) // if root,
root = null; // tree is empty
else if (isLeftChild)
parent.leftChild = null; // disconnect
else
// from parent
parent.rightChild = null;
}
// if no right child, replace with left subtree
else if (current.rightChild == null)
if (current == root)
root = current.leftChild;
else if (isLeftChild)
parent.leftChild = current.leftChild;
else
parent.rightChild = current.leftChild;
// if no left child, replace with right subtree
else if (current.leftChild == null)
if (current == root)
root = current.rightChild;
else if (isLeftChild)
parent.leftChild = current.rightChild;
else
parent.rightChild = current.rightChild;
else // two children, so replace with inorder successor
{
// get successor of node to delete (current)
Node successor = getSuccessor(current);
// connect parent of current to successor instead
if (current == root)
root = successor;
else if (isLeftChild)
parent.leftChild = successor;
else
parent.rightChild = successor;
// connect successor to current's left child
successor.leftChild = current.leftChild;
} // end else two children
// (successor cannot have a left child)
return true; // success
} // end delete()
// -------------------------------------------------------------
// returns node with next-highest value after delNode
// goes to right child, then right child's left descendents
private Node getSuccessor(Node delNode) {
Node successorParent = delNode;
Node successor = delNode;
Node current = delNode.rightChild; // go to right child
while (current != null) // until no more
{ // left children,
successorParent = successor;
successor = current;
current = current.leftChild; // go to left child
}
// if successor not
if (successor != delNode.rightChild) // right child,
{ // make connections
successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;
}
return successor;
}
// -------------------------------------------------------------
public void traverse(int traverseType) {
switch (traverseType) {
case 1:
System.out.print("\nPreorder traversal: ");
preOrder(root);
break;
case 2:
System.out.print("\nInorder traversal: ");
inOrder(root);
break;
case 3:
System.out.print("\nPostorder traversal: ");
postOrder(root);
break;
}
System.out.println();
}
// -------------------------------------------------------------
private void preOrder(Node localRoot) {
if (localRoot != null) {
System.out.print(localRoot.iData + " ");
preOrder(localRoot.leftChild);
preOrder(localRoot.rightChild);
}
}
// -------------------------------------------------------------
private void inOrder(Node localRoot) {
if (localRoot != null) {
inOrder(localRoot.leftChild);
System.out.print(localRoot.iData + " ");
inOrder(localRoot.rightChild);
}
}
// -------------------------------------------------------------
private void postOrder(Node localRoot) {
if (localRoot != null) {
postOrder(localRoot.leftChild);
postOrder(localRoot.rightChild);
System.out.print(localRoot.iData + " ");
}
}
// -------------------------------------------------------------
public void displayTree() {
Stack globalStack = new Stack();
globalStack.push(root);
int nBlanks = 32;
boolean isRowEmpty = false;
System.out
.println("......................................................");
while (isRowEmpty == false) {
Stack localStack = new Stack();
isRowEmpty = true;
for (int j = 0; j < nBlanks; j++)
System.out.print(' ');
while (globalStack.isEmpty() == false) {
Node temp = (Node) globalStack.pop();
if (temp != null) {
System.out.print(temp.iData);
localStack.push(temp.leftChild);
localStack.push(temp.rightChild);
if (temp.leftChild != null || temp.rightChild != null)
isRowEmpty = false;
} else {
System.out.print("--");
localStack.push(null);
localStack.push(null);
}
for (int j = 0; j < nBlanks * 2 - 2; j++)
System.out.print(' ');
} // end while globalStack not empty
System.out.println();
nBlanks /= 2;
while (localStack.isEmpty() == false)
globalStack.push(localStack.pop());
} // end while isRowEmpty is false
System.out
.println("......................................................");
} // end displayTree()
// -------------------------------------------------------------
} // end class Tree
// //////////////////////////////////////////////////////////////
class TreeApp {
public static void main(String[] args) throws IOException {
int value;
Tree theTree = new Tree();
theTree.insert(50, 1.5);
theTree.insert(25, 1.2);
theTree.insert(75, 1.7);
theTree.insert(12, 1.5);
theTree.insert(37, 1.2);
theTree.insert(43, 1.7);
theTree.insert(30, 1.5);
theTree.insert(33, 1.2);
theTree.insert(87, 1.7);
theTree.insert(93, 1.5);
theTree.insert(97, 1.5);
while (true) {
System.out.print("Enter first letter of show, ");
System.out.print("insert, find, delete, or traverse: ");
int choice = getChar();
switch (choice) {
case 's':
theTree.displayTree();
break;
case 'i':
System.out.print("Enter value to insert: ");
value = getInt();
theTree.insert(value, value + 0.9);
break;
case 'f':
System.out.print("Enter value to find: ");
value = getInt();
Node found = theTree.find(value);
if (found != null) {
System.out.print("Found: ");
found.displayNode();
System.out.print("\n");
} else
System.out.print("Could not find ");
System.out.print(value + '\n');
break;
case 'd':
System.out.print("Enter value to delete: ");
value = getInt();
boolean didDelete = theTree.delete(value);
if (didDelete)
System.out.print("Deleted " + value + '\n');
else
System.out.print("Could not delete ");
System.out.print(value + '\n');
break;
case 't':
System.out.print("Enter type 1, 2 or 3: ");
value = getInt();
theTree.traverse(value);
break;
default:
System.out.print("Invalid entry\n");
} // end switch
} // end while
} // end main()
// -------------------------------------------------------------
public static String getString() throws IOException {
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;
}
// -------------------------------------------------------------
public static char getChar() throws IOException {
String s = getString();
return s.charAt(0);
}
// -------------------------------------------------------------
public static int getInt() throws IOException {
String s = getString();
return Integer.parseInt(s);
}
// -------------------------------------------------------------
} // end class TreeApp
// //////////////////////////////////////////////////////////////
分享到:
相关推荐
数据结构-二叉树Java实现及其遍历算法,代码示例中实现了中序遍历,简单易学。
在Java中实现二叉树,我们可以自定义一个类来表示树节点,并通过节点之间的连接来构建整个树形结构。这篇博客主要讨论了如何在Java中实现二叉树的基本操作,包括递归和非递归方式的三种遍历顺序:前序遍历、中序遍历...
平衡二叉树Java实现,平衡二叉树Java实现,平衡二叉树Java实现,平衡二叉树Java实现,
二叉树的java实现
总结来说,理解和掌握二叉树以及如何用JAVA实现它们是成为优秀程序员的关键一步。通过实践,你可以更深入地了解数据结构的精髓,提升算法设计能力,并为解决复杂问题打下坚实基础。对于初学者,可以从简单的二叉树...
本文将深入探讨“数据结构 二叉树 java图形界面实现”这一主题,主要围绕二叉树的基本概念、常见操作以及如何在Java环境中结合图形界面进行实现。 首先,二叉树是一种非线性的数据结构,每个节点最多有两个子节点,...
代码实现: 二叉树的查找、插入、删除和输出根节点到当前节点的路径 二叉树的前序遍历,中序遍历和后续遍历 TreeNode.java --定义树节点 Mytree.java----创建树结构和上述功能函数 TestTree.java --测试上述的功能
java二叉树实现 (简单实现,入门用) /**创建二叉树*/ public BinaryTree createTree(String treeStr); /**寻找结点*/ public BinaryTree findNode(BinaryTree tree ,char sign); /**找所给结点的左子树*/ ...
后序遍历的Java实现通常使用栈来辅助操作: ```java public void postOrderTraversal(TreeNode node) { if (node == null) return; Stack<TreeNode> stack = new Stack(); TreeNode prev = null; while (node...
java实现二叉树非递归前序中序后序遍历
在本项目中,“基于JAVA开发的二叉树课程设计与实现”主要涵盖了计算机科学中的数据结构和算法领域,特别是关于二叉树的理论知识、Java编程语言的应用以及软件工程的基本实践。二叉树是一种重要的非线性数据结构,...
在Java中动态实现二叉树,即在运行时根据需要创建、更新和操作树结构,这涉及到对数据结构和Swing组件的深入理解。 首先,二叉树是一种特殊的树形数据结构,每个节点最多有两个子节点,分别称为左孩子和右孩子。...
下面是一些常见的二叉树操作的Java实现示例: 1. **创建二叉树**: 创建二叉树通常从空节点开始,通过插入节点来构造。例如,插入新节点的函数可能如下: ```java public void insert(int val) { root = insert...
编程实现如下功能: 1、假设二叉树的结点值是字符,根据输入的一颗二叉树的标明了空子树的完整先根遍历序列,建立一棵以二叉链表表示的二叉树。 2、对二叉树进行先根、中根和后根遍历操作,并输出遍历序列,同时观察...
总之,Java实现二叉树的最佳方法依赖于对二叉树性质的深入理解以及对Java语言特性的熟练应用。递归构建和遍历是实现二叉树的两个核心方面,它们共同构建了复杂二叉树算法的基石。在实际应用中,还需要考虑树结构的...
数据结构二叉树(Binary Tree)的Java实现; 包括最基本的清空方法/判断为空方法/求树的深度的方法/获得父结点的方法/获得左/右兄弟结点的方法/递归先序/中序/后序遍历二叉树的方法;
文档中是我自己实现的用java语言实现(1)判断给定的二叉树是否平衡;(2)二叉树插入新数据后,如果失衡自我旋转调整的方法。
1:构造一个二叉树 2:二叉树前序遍历(递归) 3:二叉树中序遍历(递归) 4:二叉树后续遍历(递归) 5:二叉树前序遍历(非递归) 6:二叉树中序遍历(非递归) 7:二叉树后序遍历(非递归)
在"二叉树java源码完整"这个项目中,我们可以期待找到用Java实现的二叉树类及其相关方法。源码通常会包括以下部分: 1. **基础定义**:首先,会有一个类(例如`BinaryTree`或者`Node`)来表示二叉树的节点,每个...
在这个Java实现中,我们可以看到一个完整的二叉树可视化系统,包括四个关键的Java源文件:BinaryNode、Show1_12、Display_Tree和TreeControl。 1. **BinaryNode.java**: 这个文件代表二叉树的基本节点。在Java中,...