`
phosphory
  • 浏览: 72741 次
  • 性别: Icon_minigender_1
  • 来自: 福建
社区版块
存档分类
阅读更多

 

数据库系统是管理信息系统的核心,基于数据库的联机事务处理(OLTP)以及联机分析处理(OLAP)是银行、企业、政府等部门最为重要

的计算机应用之一。从大多数系统的应用实例来看,查询操作在各种数据库操作中所占据的比重最大,而查询操作所基于的SELECT语句

在SQL语句中又是代价最大的语句。举例来说,如果数据的量积累到一定的程度,比如一个银行的账户数据库表信息积累到上百万甚至

上千万条记录,全表扫描一次往往需要数十分钟,甚至数小时。如果采用比全表扫描更好的查询策略,往往可以使查询时间降为几分钟,

由此可见查询优化技术的重要性。笔者在应用项目的实施中发现,许多程序员在利用一些前端数据库开发工具(如PowerBuilder、

Delphi等)开发数据库应用程序时,只注重用户界面的华丽,并不重视查询语句的效率问题,导致所开发出来的应用系统效率低下,

资源浪费严重。因此,如何设计高效合理的查询语句就显得非常重要。

本文以应用实例为基础,结合数据库理论,介绍查询优化技术在现实系统中的运用。

分析问题 许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往

可以使程序性能提高数十倍。查询计划是用户所提交的SQL语句的集合,查询规划是经过优化处理之后所产生的语句集合。

 

DBMS处理查询计划的过程是这样的:

在做完查询语句的词法、语法检查之后,将语句提交给DBMS的查询优化器,优化器做完代数优化和存取路径的优化之后,由预编译模块

对语句进行处理并生成查询规划,然后在合适的时间提交给系统处理执行,最后将执行结果返回给用户。在实际的数据库产品(如Oracle、

Sybase等)的高版本中都是采用基于代价的优化方法,这种优化能根据从系统字典表所得到的信息来估计不同的查询规划的代价,然后

选择一个较优的规划。虽然现在的数据库产品在查询优化方面已经做得越来越好,但由用户提交的SQL语句是系统优化的基础,很难设想

一个原本糟糕的查询计划经过系统的优化之后会变得高效,因此用户所写语句的优劣至关重要。

系统所做查询优化我们暂不讨论,下面重点说明改善用户查询计划的解决方案。

解决问题 下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。 1.合理使用索引 索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。

现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。 ●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。 ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。

比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。

如果建立索引不但不会提高查询效率,反而会严重降低更新速度。 ●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。 ●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,

索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,

可以试着用tbcheck工具检查索引的完整性,必要时进行修复。

另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序 应当简化或避免对大型表进行重复的排序。

当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素: ●索引中不包括一个或几个待排序的列; ●group by或order by子句中列的次序与索引的次序不一样; ●排序的列来自不同的表。 为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。

如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。 3.消除对大型表行数据的顺序存取 在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。

比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。

避免这种情况的主要方法就是对连接的列进行索引。

例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。

如果两个表要做连接,就要在“学号”这个连接字段上建立索引。还可以使用并集来避免顺序存取。

尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。

下面的查询将强迫对orders表执行顺序操作: SELECTFROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。

因为这个语句要检索的是分离的行的集合,所以应该改为如下语句: SELECTFROM orders WHERE customer_num=104 AND order_num>1001 UNION SELECTFROM orders WHERE order_num=1008 这样就能利用索引路径处理查询。 4.避免相关子查询 一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。

查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式 MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。

例如:SELECTFROM customer WHERE zipcode LIKE “98_ _ _” 即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。

如果把语句改为

SELECT * FROM customer WHERE zipcode >98000”,

在执行查询时就会利用索引来查询,显然会大大提高速度。 另外,还要避免非开始的子串。例如语句:SELECTFROM customer WHERE zipcode[2,3] >80”,

在where子句中采用了非开始子串,因而这个语句也不会使用索引。 6.使用临时表加速查询 把表的一个子集进行排序并创建临时表,有时能加速查询。

它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。

例如: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 AND cust.postcode>98000 ORDER BY cust.name 如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 ORDER BY cust.name INTO TEMP cust_with_balance 然后以下面的方式在临时表中查询: SELECTFROM cust_with_balance WHERE postcode>98000” 临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。 注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。 7.用排序来取代非顺序存取 非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求

存取大量非顺序页的查询。有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。

实例分析 下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示: 1.part表 零件号零件描述其他列 (part_num)(part_desc)(other column102032Seageat 30G disk…… 500049Novel 10M network card…… …… 2.vendor表 厂商号厂商名其他列 (vendor _num)(vendor_name) (other column910257Seageat Corp…… 523045IBM Corp…… …… 3.parven表 零件号厂商号零件数量 (part_num)(vendor_num)(part_amount) 1020329102573,450,000 2344233210014000000 …… 下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表: SELECT part_desc,vendor_name,part_amount FROM part,vendor,parven WHERE part.part_num=parven.part_num AND parven.vendor_num = vendor.vendor_num ORDER BY part.part_num 如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。

关于表与索引的统计信息如下:

表行尺寸行数量每页行数量数据页数量 (table)(row size)(Row count)(Rows/Pages)(Data Pages) part1501000025400 Vendor1501000 2540 Parven13 15000300 50 索引键尺寸每页键数量页面数量 (Indexes)(Key Size)(Keys/Page)(Leaf Pages) part450020 Vendor45002 Parven825060 看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,

因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。

此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),

总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。

实际上,我们可以通过使用临时表分3个步骤来提高查询效率: 1.从parven表中按vendor_num的次序读数据: SELECT part_num,vendor_num,price FROM parven ORDER BY vendor_num INTO temp pv_by_vn 这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。 2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序: SELECT pv_by_vn,* vendor.vendor_num FROM pv_by_vn,vendor WHERE pv_by_vn.vendor_num=vendor.vendor_num ORDER BY pv_by_vn.part_num INTO TMP pvvn_by_pn DROP TABLE pv_by_vn 这个查询读取pv_by_vn(50页),它通过索引存取vendor表1.5万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表

402=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。

3.把输出和part连接得到最后的结果: SELECT pvvn_by_pn.*,part.part_desc FROM pvvn_by_pn,part WHERE pvvn_by_pn.part_num=part.part_num DROP TABLE pvvn_by_pn 这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表1.5万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1

笔者在Informix Dynamic Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。

小结 20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。

我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。

查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。

 

 

转自:http://topic.csdn.net/u/20080705/10/DDFEE6A5-52D2-4630-BA7B-D6019F540871.html

分享到:
评论

相关推荐

    分布式数据库查询优化技术.doc

    分布式数据库查询优化技术是提升数据库性能的关键手段,尤其是在分布式数据库系统中,由于数据分布在不同的节点上,优化查询执行策略显得尤为重要。本文主要探讨了分布式数据库的特性、组成、功能,以及查询优化技术...

    数据库查询优化技术整理

    数据库查询优化技术是提高应用程序性能的关键,特别是在处理大规模数据的业务场景中,如银行和企业的OLTP及OLAP系统。SQL语句中的SELECT查询是最耗时的部分,尤其是在数据量庞大的情况下,全表扫描可能导致查询时间...

    空间数据库查询优化技术研究.docx

    空间数据库查询优化技术是现代信息技术中的关键组成部分,特别是在互联网时代,地理信息系统(GIS)的广泛应用使得对空间数据高效检索的需求日益增长。本文主要探讨了空间数据库查询优化技术的各个方面,旨在提升...

    SQL Server数据库查询优化技术应用.pdf

    在设计查询时,应当尽量减少在WHERE子句中出现的函数或计算,这样可以利用数据库优化器的优化机制,提升查询性能。 SQL Server数据库查询优化的另一方面还涉及到查询优化器的自动优化功能。查询优化器负责分析查询...

    数据库的查询优化技术

    ### 数据库的查询优化技术 #### 一、引言 在现代信息技术中,数据库系统扮演着极其重要的角色,尤其在企业级应用中更是不可或缺的一部分。随着业务量的增长和技术的发展,如何提高数据库系统的性能成为了关键问题之...

    论文研究-数据库查询优化技术的历史、现状与未来.pdf

    传统的查询树优化方法,即基于左线性树、右线性树、浓密树、操作森林的并行数据库查询优化方法,...基于遗传算法的并行优化算法,深入研究了基于机群并行数据库中关系存储的选择、多连接查询优化和查询处理等关键技术。

    MySQL数据库查询优化

    综述数据库、关系代数、查询优化技术 综述数据库调优技术 预计时间1小时 第2课 数据库查询优化技术总揽 综述查询优化技术范围,包括查询重用、查询重写规则、查询算法优化、并行查询优化等 综述逻辑查询优化,包括...

    基于SQL标准的关系数据库查询优化技术研究

    从索引优化以及SQL语句优化2方面分析了关系数据库查询优化技术。使用合理有效的索引可以提高查询效率,创建索引应与查询需求紧密结合。对SQL查询语句从执行过程角度进行规划设计,可以有效减少查询中间过程的计算量,...

    数据库查询优化算法

    数据库查询优化是数据库管理系统中的关键环节,其目的是在满足用户查询需求的同时,尽可能地提高查询效率,减少资源消耗。在数据库领域,有三种经典的查询优化算法:基于成本的优化、基于规则的优化以及动态规划优化...

    数据库查询优化论文

    #### 二、查询优化技术概述 查询优化主要包括两个方面:逻辑查询优化和物理查询优化。 ##### 逻辑查询优化 逻辑查询优化涉及将SQL语句转换为等价但可能更高效的表达式。这一过程包括重写查询结构,如通过关联规则...

    分布式数据库系统的查询优化技术研究.pdf

    查询优化技术是提高分布式数据库系统性能的关键技术之一,它能显著改善系统处理查询请求的效率和响应速度。以下是对分布式数据库查询优化技术研究的详细知识点梳理。 一、分布式数据库查询优化技术现状 分布式...

    改进粒子群优化算法的数据库查询优化方法.pdf

    数据库查询优化技术是数据库管理系统中的关键技术之一。在数据库查询过程中,优化算法能够帮助设计出高效的查询计划,从而减少查询时间,提高查询的准确性。然而,现有的数据库查询优化方法存在查询效率低和查询错误...

    SQL server数据库查询优化探讨.pdf

    合理运用自动查询优化技术、索引技术、存储过程及面向对象方法等策略,能够显著提高SQL Server数据库的查询效率。同时,数据库管理人员应当对可能影响查询效率的因素有所了解,从而在实际工作中做出更合理的优化决策...

    分布式数据库查询优化

    ### 分布式数据库查询优化详解 #### 一、背景与挑战 随着信息技术的快速发展和各行各业对数据处理需求的增加,...通过上述方法和技术的应用,可以有效地优化分布式数据库的查询性能,提高系统的整体效率和用户体验。

    基于Oracle数据库的查询优化技术.pdf

    【Oracle数据库查询优化技术】 Oracle数据库作为一款广泛应用于各行业的关系型数据库系统,其查询优化对于提升系统性能至关重要。查询优化主要包括三个方面:应用适当的索引、SQL语句优化和其他优化手段。 1. 应用...

Global site tag (gtag.js) - Google Analytics