- 浏览: 1903568 次
- 性别:
- 来自: 北京
文章分类
最新评论
-
July01:
最近了解到一款StratoIO打印控件,功能如下:1、Html ...
jquery打印指定的div -
GentlemanQc:
...
quartz系列(二)spring3.2.5与quartz2.1.7集群版集成简要说明 -
静夜独窗:
你好,能说一下server.xml增加的配置是怎么影响性能的吗 ...
tomcat7.0性能优化-挑战极限精简版 -
beyondfengyu:
beyondfengyu 写道如果每个客户进程的时间不同步,时 ...
java并发(二十二)分布式锁 -
beyondfengyu:
如果每个客户进程的时间不同步,时间超前的进程是不是更容易得到锁 ...
java并发(二十二)分布式锁
初始标记
CMS-initial-mark
并发标记
CMS-concurrent-mark
CMS-concurrent-preclean
CMS-concurrent-abortable-preclean
重新标记
CMS-remark
并发清理
CMS-concurrent-sweep
重置线程
CMS-concurrent-reset
其中preclean该步用于重新扫描在concurrent mark阶段CMS Heap中被新创建的对象或从新生代晋升到旧生代对象的引用关系,以减少remark所需耗费的时间,这是Sun JDK 1.5后增加的一个优化步骤。
可选参数
-XX:CMSInitiatingOccupancyFraction=85(触发FULL GC的老年代使用百分比)
-XX:CMSFullGCsBeforeCompaction=5(多少次后进行内存压缩)
-XX:ParallelGCThreads=8(并发标记和清除时的线程数)
其他参数
-XX:+UseCMSInitiatingOccupancyOnly 使用手动定义初始化定义开始CMS收集
CMS触发参数与条件(与eden区有关系)
-XX:CMSScheduleRemarkEdenSizeThreshold=2M
-XX:CMSScheduleRemarkEdenPenetration=50
-XX:CMSMaxAbortablePrecleanTime=5000(单位为毫秒)
当eden space占用超过CMSScheduleRemarkEdenSizeThreshold时,执行此步,并且将一直并发的执行到eden space的使用率超过CMSScheduleRemarkEdenPenetration,之后触发remark动作,过CMSMaxAbortablePrecleanTime时间扔为达到要求,则直接触发CMS-remark
常用的优化配置示例
案例一:空跑
空跑eclipse的时候,占用了507K的新生代空间,老生代无任何数据。持久代使用了3033K空间。其中默认值遵循了eden:survival=8:1的原则。
案例二:验证对象大小
新生代使用的空间为6651K = 507 + 2048 * 3,所以新分配的3个2M对象,占用了6M的空间。但是没有发生GC,如果再分配一个2M对象,就会超出eden空间进行一次minor gc。
案例三:minor GC
从内容来看,执行了一次新生代的垃圾回收操作。对象占用空间从6487K减少到173K,其中总新生代可用空间(1*eden + 1*survival)即9216K,耗时0.0048546 secs,整个堆内存的情况为闸弄空间从6487K降低到6319K,其中总可用堆大小为19456K。其中查看heap,可知道新生代已用2385K,老生代使用6146K,基本与之前分配的3个2M对象2048*3=6144相等,表明此3个对象进行minor GC后,进入了老年代。而新生代占用的空间2385中,基本与刚分配的第四个2M对象相等。下个实验,我们将触发major GC即:full gc
案例四:major GC
本案例开启参数-XX:+UseCMSInitiatingOccupancyOnly
案例五:major GC
本案例删除参数-XX:+UseCMSInitiatingOccupancyOnly
案例六:设置CMS的preclean超时触发
通过启动参数CMSScheduleRemarkEdenSizeThreshold我们可以知道,当eden区使用超过1M的时候,CMS垃圾收集触发以后,就会启动preclean(这个是JDK1.5的新特性),当并发执行到CMSScheduleRemarkEdenPenetration百分比值时候直接触发remark,如果设置了XX:CMSMaxAbortablePrecleanTime,则在CMSMaxAbortablePrecleanTime时间后,直接触发remark,忽略CMSScheduleRemarkEdenPenetration。
其中可以看到 CMS: abort preclean due to time 7.221:表示触发了preclean
案例七:设置CMS的preclean容量触发
本次实验,设置了XX:CMSScheduleRemarkEdenPenetration=35,只有2秒的时候,优先于-XX:CMSMaxAbortablePrecleanTime=5000设置的5秒触发了remark,可以观察
2.196: [CMS-concurrent-abortable-preclean-start]
4.216: [CMS-concurrent-abortable-preclean: 0.023/2.020 secs] [Times: user=0.02 sys=0.00, real=2.02 secs]
时间停顿有2秒钟。
附录
参考文章
http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
http://szhnet.iteye.com/blog/1423894
http://book.51cto.com/art/201011/235590.htm
文章更新日志
2014-01-24
完善个别CMS参数的说明
作者简介
昵称:澳洲鸟
姓名:朴海林
QQ:85977328
MSN:6301655@163.com
CMS-initial-mark
并发标记
CMS-concurrent-mark
CMS-concurrent-preclean
CMS-concurrent-abortable-preclean
重新标记
CMS-remark
并发清理
CMS-concurrent-sweep
重置线程
CMS-concurrent-reset
其中preclean该步用于重新扫描在concurrent mark阶段CMS Heap中被新创建的对象或从新生代晋升到旧生代对象的引用关系,以减少remark所需耗费的时间,这是Sun JDK 1.5后增加的一个优化步骤。
可选参数
-XX:CMSInitiatingOccupancyFraction=85(触发FULL GC的老年代使用百分比)
-XX:CMSFullGCsBeforeCompaction=5(多少次后进行内存压缩)
-XX:ParallelGCThreads=8(并发标记和清除时的线程数)
其他参数
-XX:+UseCMSInitiatingOccupancyOnly 使用手动定义初始化定义开始CMS收集
CMS触发参数与条件(与eden区有关系)
-XX:CMSScheduleRemarkEdenSizeThreshold=2M
-XX:CMSScheduleRemarkEdenPenetration=50
-XX:CMSMaxAbortablePrecleanTime=5000(单位为毫秒)
当eden space占用超过CMSScheduleRemarkEdenSizeThreshold时,执行此步,并且将一直并发的执行到eden space的使用率超过CMSScheduleRemarkEdenPenetration,之后触发remark动作,过CMSMaxAbortablePrecleanTime时间扔为达到要求,则直接触发CMS-remark
常用的优化配置示例
#!/bin/bash SERVER_HOME="/application/search/server" CONF_HOME="/application/search/server/conf" LOG_HOME="/data0/search/server" CURRENT_TIME=`date +%Y-%m-%d_%H:%M:%S` java -server -verbose:gc -Xms512m -Xmx512m -Xmn192m -XX:PermSize=32m -XX:MaxPermSize=32m -Xss256k -XX:+UseConcMarkSweepGC -XX:ParallelGCThreads=4 -XX:+UseCMSCompactAtFullCollection -XX:CMSMaxAbortablePrecleanTime=5000 -XX:CMSFullGCsBeforeCompaction=5 -XX:CMSInitiatingOccupancyFraction=85 -XX:+UseParNewGC -Xloggc:${LOG_HOME}/logs/gc.${CURRENT_TIME}.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=${LOG_HOME}/logs/HeapDumpOnOutOfMemoryError.${CURRENT_TIME}.log -XX:+DisableExplicitGC -XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -cp ${SERVER_HOME}/server.jar:${SERVER_HOME}/lib/* -DCONF_HOME=${CONF_HOME} -DLOG_HOME=${LOG_HOME} com.chinaso.search.Server >>${LOG_HOME}/logs/console.log 2>&1 &
案例一:空跑
package com.chinaso.phl; /** * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseCMSInitiatingOccupancyOnly * @author piaohailin * @date 2014-1-15 */ public class Server0 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { } } /* Heap par new generation total 9216K, used 507K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 6% used [0x00000000f9a00000, 0x00000000f9a7eee0, 0x00000000fa200000) from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) concurrent mark-sweep generation total 10240K, used 0K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3033K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
空跑eclipse的时候,占用了507K的新生代空间,老生代无任何数据。持久代使用了3033K空间。其中默认值遵循了eden:survival=8:1的原则。
案例二:验证对象大小
package com.chinaso.phl; /** * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseCMSInitiatingOccupancyOnly * @author piaohailin * @date 2014-1-15 */ public class Server1 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(2); // System.out.println("minor gc"); // byte[] b4 = getM(2); } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* Heap par new generation total 9216K, used 6651K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 81% used [0x00000000f9a00000, 0x00000000fa07ef10, 0x00000000fa200000) from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) concurrent mark-sweep generation total 10240K, used 0K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3034K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
新生代使用的空间为6651K = 507 + 2048 * 3,所以新分配的3个2M对象,占用了6M的空间。但是没有发生GC,如果再分配一个2M对象,就会超出eden空间进行一次minor gc。
案例三:minor GC
package com.chinaso.phl; /** * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseCMSInitiatingOccupancyOnly * @author piaohailin * @date 2014-1-15 */ public class Server2 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(2); System.out.println("minor gc"); byte[] b4 = getM(2);//执行这一行的时候就会GC } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* minor gc 0.108: [GC 0.109: [ParNew: 6487K->173K(9216K), 0.0048546 secs] 6487K->6319K(19456K), 0.0049077 secs] [Times: user=0.03 sys=0.00, real=0.00 secs] Heap par new generation total 9216K, used 2385K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 27% used [0x00000000f9a00000, 0x00000000f9c28fd8, 0x00000000fa200000) from space 1024K, 16% used [0x00000000fa300000, 0x00000000fa32b500, 0x00000000fa400000) to space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) concurrent mark-sweep generation total 10240K, used 6146K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3039K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
从内容来看,执行了一次新生代的垃圾回收操作。对象占用空间从6487K减少到173K,其中总新生代可用空间(1*eden + 1*survival)即9216K,耗时0.0048546 secs,整个堆内存的情况为闸弄空间从6487K降低到6319K,其中总可用堆大小为19456K。其中查看heap,可知道新生代已用2385K,老生代使用6146K,基本与之前分配的3个2M对象2048*3=6144相等,表明此3个对象进行minor GC后,进入了老年代。而新生代占用的空间2385中,基本与刚分配的第四个2M对象相等。下个实验,我们将触发major GC即:full gc
案例四:major GC
本案例开启参数-XX:+UseCMSInitiatingOccupancyOnly
package com.chinaso.phl; import java.util.concurrent.TimeUnit; /** * 案例四:major GC * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseCMSInitiatingOccupancyOnly * @author piaohailin * @date 2014-1-15 */ public class Server3 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(2); System.out.println("minor gc"); byte[] b4 = getM(2);//执行这一行的时候就会GC TimeUnit.SECONDS.sleep(2); byte[] b5 = getM(2); byte[] b6 = getM(2); System.out.println("promotion failed"); byte[] b7 = getM(2); TimeUnit.SECONDS.sleep(2); } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* minor gc 0.102: [GC 0.102: [ParNew: 6487K->176K(9216K), 0.0049663 secs] 6487K->6322K(19456K), 0.0050174 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] promotion failed 2.110: [GC 2.110: [ParNew: 6570K->6570K(9216K), 0.0000346 secs]2.110: [CMS: 6146K->8192K(10240K), 0.0134294 secs] 12716K->12448K(19456K), [CMS Perm : 3074K->3074K(21248K)], 0.0135341 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 2.124: [GC [1 CMS-initial-mark: 8192K(10240K)] 14496K(19456K), 0.0002687 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.125: [CMS-concurrent-mark-start] 2.128: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.128: [CMS-concurrent-preclean-start] 2.130: [CMS-concurrent-preclean: 0.002/0.002 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 2.130: [CMS-concurrent-abortable-preclean-start] 2.130: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.131: [GC[YG occupancy: 6304 K (9216 K)]2.131: [Rescan (parallel) , 0.0001867 secs]2.131: [weak refs processing, 0.0000054 secs] [1 CMS-remark: 8192K(10240K)] 14496K(19456K), 0.0002429 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.131: [CMS-concurrent-sweep-start] 2.131: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.131: [CMS-concurrent-reset-start] 2.131: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.092: [GC [1 CMS-initial-mark: 8192K(10240K)] 14496K(19456K), 0.0002814 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.093: [CMS-concurrent-mark-start] 4.096: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.096: [CMS-concurrent-preclean-start] 4.096: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.096: [CMS-concurrent-abortable-preclean-start] 4.096: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.096: [GC[YG occupancy: 6304 K (9216 K)]4.096: [Rescan (parallel) , 0.0001894 secs]4.096: [weak refs processing, 0.0000050 secs] [1 CMS-remark: 8192K(10240K)] 14496K(19456K), 0.0002433 secs] [Times: user=0.00 sys=0.01, real=0.00 secs] 4.096: [CMS-concurrent-sweep-start] 4.096: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.096: [CMS-concurrent-reset-start] 4.097: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap par new generation total 9216K, used 6468K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 78% used [0x00000000f9a00000, 0x00000000fa051178, 0x00000000fa200000) from space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) to space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) concurrent mark-sweep generation total 10240K, used 8192K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3082K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
案例五:major GC
本案例删除参数-XX:+UseCMSInitiatingOccupancyOnly
package com.chinaso.phl; import java.util.concurrent.TimeUnit; /** * 案例五:major GC * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps * @author piaohailin * @date 2014-1-15 */ public class Server4 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(2); System.out.println("minor gc"); byte[] b4 = getM(2);//执行这一行,minor GC TimeUnit.SECONDS.sleep(2); byte[] b5 = getM(2); byte[] b6 = getM(2); System.out.println("promotion failed"); byte[] b7 = getM(2);//执行这一行,分配担保失败 TimeUnit.SECONDS.sleep(2); } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* minor gc 0.106: [GC 0.106: [ParNew: 6487K->176K(9216K), 0.0050621 secs] 6487K->6322K(19456K), 0.0051125 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 2.111: [GC [1 CMS-initial-mark: 6146K(10240K)] 8620K(19456K), 0.0003830 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.112: [CMS-concurrent-mark-start] promotion failed 2.115: [GC 2.115: [ParNew: 6570K->6570K(9216K), 0.0000308 secs]2.115: [CMS2.117: [CMS-concurrent-mark: 0.004/0.005 secs] [Times: user=0.00 sys=0.02, real=0.00 secs] (concurrent mode failure): 6146K->8192K(10240K), 0.0144718 secs] 12716K->12448K(19456K), [CMS Perm : 3074K->3074K(21248K)], 0.0145735 secs] [Times: user=0.00 sys=0.02, real=0.01 secs] 4.094: [GC [1 CMS-initial-mark: 8192K(10240K)] 14496K(19456K), 0.0003338 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.094: [CMS-concurrent-mark-start] 4.098: [CMS-concurrent-mark: 0.004/0.004 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 4.098: [CMS-concurrent-preclean-start] 4.100: [CMS-concurrent-preclean: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.100: [CMS-concurrent-abortable-preclean-start] 4.100: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.102: [GC[YG occupancy: 6304 K (9216 K)]4.103: [Rescan (parallel) , 0.0001871 secs]4.103: [weak refs processing, 0.0000054 secs] [1 CMS-remark: 8192K(10240K)] 14496K(19456K), 0.0002575 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.103: [CMS-concurrent-sweep-start] 4.103: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.103: [CMS-concurrent-reset-start] 4.103: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap par new generation total 9216K, used 6468K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 78% used [0x00000000f9a00000, 0x00000000fa051178, 0x00000000fa200000) from space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) to space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) concurrent mark-sweep generation total 10240K, used 8192K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3082K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
案例六:设置CMS的preclean超时触发
package com.chinaso.phl; import java.util.concurrent.TimeUnit; /** * 案例六:设置CMS的preclean超时触发 * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:CMSMaxAbortablePrecleanTime=5000 -XX:CMSScheduleRemarkEdenSizeThreshold=1M * @author piaohailin * @date 2014-1-15 */ public class Server5 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(3); System.out.println("minor gc"); byte[] b4 = getM(1); TimeUnit.SECONDS.sleep(8); } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* minor gc 0.199: [GC 0.199: [ParNew: 7511K->176K(9216K), 0.0057871 secs] 7511K->7346K(19456K), 0.0058452 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 2.204: [GC [1 CMS-initial-mark: 7170K(10240K)] 8619K(19456K), 0.0004038 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.205: [CMS-concurrent-mark-start] 2.208: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.02 sys=0.00, real=0.00 secs] 2.208: [CMS-concurrent-preclean-start] 2.209: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.209: [CMS-concurrent-abortable-preclean-start] CMS: abort preclean due to time 7.221: [CMS-concurrent-abortable-preclean: 0.059/5.012 secs] [Times: user=0.05 sys=0.00, real=5.01 secs] 7.221: [GC[YG occupancy: 1449 K (9216 K)]7.221: [Rescan (parallel) , 0.0001736 secs]7.221: [weak refs processing, 0.0000050 secs] [1 CMS-remark: 7170K(10240K)] 8619K(19456K), 0.0002317 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 7.221: [CMS-concurrent-sweep-start] 7.221: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 7.221: [CMS-concurrent-reset-start] 7.222: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap par new generation total 9216K, used 1613K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 17% used [0x00000000f9a00000, 0x00000000f9b675a8, 0x00000000fa200000) from space 1024K, 17% used [0x00000000fa300000, 0x00000000fa32c110, 0x00000000fa400000) to space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) concurrent mark-sweep generation total 10240K, used 7170K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3082K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
通过启动参数CMSScheduleRemarkEdenSizeThreshold我们可以知道,当eden区使用超过1M的时候,CMS垃圾收集触发以后,就会启动preclean(这个是JDK1.5的新特性),当并发执行到CMSScheduleRemarkEdenPenetration百分比值时候直接触发remark,如果设置了XX:CMSMaxAbortablePrecleanTime,则在CMSMaxAbortablePrecleanTime时间后,直接触发remark,忽略CMSScheduleRemarkEdenPenetration。
其中可以看到 CMS: abort preclean due to time 7.221:表示触发了preclean
案例七:设置CMS的preclean容量触发
package com.chinaso.phl; import java.util.concurrent.TimeUnit; /** * 案例七:设置CMS的preclean容量触发 * -Xms20m -Xmx20m -Xmn10m -XX:+UseConcMarkSweepGC -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:CMSMaxAbortablePrecleanTime=5000 -XX:CMSScheduleRemarkEdenSizeThreshold=1M -XX:CMSScheduleRemarkEdenPenetration=35 * @author piaohailin * @date 2014-1-15 */ public class Server6 { /** * * @param args * @author piaohailin * @date 2014-1-15 */ public static void main(String[] args) throws Exception { byte[] b1 = getM(2); byte[] b2 = getM(2); byte[] b3 = getM(3); System.out.println("minor gc"); byte[] b4 = getM(1); TimeUnit.SECONDS.sleep(2); byte[] b5 = getM(1); TimeUnit.SECONDS.sleep(2); byte[] b6 = getM(1); TimeUnit.SECONDS.sleep(8); } public static byte[] getM(int m) { return new byte[1024 * 1024 * m]; } } /* minor gc 0.185: [GC 0.185: [ParNew: 7511K->176K(9216K), 0.0057790 secs] 7511K->7346K(19456K), 0.0058398 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 2.191: [GC [1 CMS-initial-mark: 7170K(10240K)] 8619K(19456K), 0.0004258 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.192: [CMS-concurrent-mark-start] 2.195: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.195: [CMS-concurrent-preclean-start] 2.196: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 2.196: [CMS-concurrent-abortable-preclean-start] 4.216: [CMS-concurrent-abortable-preclean: 0.023/2.020 secs] [Times: user=0.02 sys=0.00, real=2.02 secs] 4.216: [GC[YG occupancy: 3497 K (9216 K)]4.216: [Rescan (parallel) , 0.0001836 secs]4.216: [weak refs processing, 0.0000058 secs] [1 CMS-remark: 7170K(10240K)] 10667K(19456K), 0.0002418 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.216: [CMS-concurrent-sweep-start] 4.216: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.216: [CMS-concurrent-reset-start] 4.217: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.266: [GC [1 CMS-initial-mark: 7170K(10240K)] 10667K(19456K), 0.0002891 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.266: [CMS-concurrent-mark-start] 4.269: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.269: [CMS-concurrent-preclean-start] 4.269: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.269: [CMS-concurrent-abortable-preclean-start] 4.270: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.270: [GC[YG occupancy: 3497 K (9216 K)]4.270: [Rescan (parallel) , 0.0001925 secs]4.270: [weak refs processing, 0.0000050 secs] [1 CMS-remark: 7170K(10240K)] 10667K(19456K), 0.0002479 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.270: [CMS-concurrent-sweep-start] 4.270: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.270: [CMS-concurrent-reset-start] 4.270: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.271: [GC [1 CMS-initial-mark: 7170K(10240K)] 10667K(19456K), 0.0003114 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.271: [CMS-concurrent-mark-start] 6.274: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.274: [CMS-concurrent-preclean-start] 6.274: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.274: [CMS-concurrent-abortable-preclean-start] 6.274: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.274: [GC[YG occupancy: 3497 K (9216 K)]6.274: [Rescan (parallel) , 0.0002117 secs]6.275: [weak refs processing, 0.0000042 secs] [1 CMS-remark: 7170K(10240K)] 10667K(19456K), 0.0002752 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.275: [CMS-concurrent-sweep-start] 6.275: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 6.275: [CMS-concurrent-reset-start] 6.275: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.275: [GC [1 CMS-initial-mark: 7170K(10240K)] 10667K(19456K), 0.0002918 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.276: [CMS-concurrent-mark-start] 8.279: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.279: [CMS-concurrent-preclean-start] 8.279: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.279: [CMS-concurrent-abortable-preclean-start] 8.279: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.279: [GC[YG occupancy: 3497 K (9216 K)]8.279: [Rescan (parallel) , 0.0001401 secs]8.279: [weak refs processing, 0.0000042 secs] [1 CMS-remark: 7170K(10240K)] 10667K(19456K), 0.0001936 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.279: [CMS-concurrent-sweep-start] 8.279: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8.279: [CMS-concurrent-reset-start] 8.280: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.280: [GC [1 CMS-initial-mark: 7170K(10240K)] 10667K(19456K), 0.0003064 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.280: [CMS-concurrent-mark-start] 10.283: [CMS-concurrent-mark: 0.003/0.003 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.283: [CMS-concurrent-preclean-start] 10.283: [CMS-concurrent-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.283: [CMS-concurrent-abortable-preclean-start] 10.283: [CMS-concurrent-abortable-preclean: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.283: [GC[YG occupancy: 3497 K (9216 K)]10.283: [Rescan (parallel) , 0.0001428 secs]10.284: [weak refs processing, 0.0000042 secs] [1 CMS-remark: 7170K(10240K)] 10667K(19456K), 0.0001940 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.284: [CMS-concurrent-sweep-start] 10.284: [CMS-concurrent-sweep: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 10.284: [CMS-concurrent-reset-start] 10.284: [CMS-concurrent-reset: 0.000/0.000 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] Heap par new generation total 9216K, used 3661K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) eden space 8192K, 42% used [0x00000000f9a00000, 0x00000000f9d675c8, 0x00000000fa200000) from space 1024K, 17% used [0x00000000fa300000, 0x00000000fa32c110, 0x00000000fa400000) to space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) concurrent mark-sweep generation total 10240K, used 7170K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) concurrent-mark-sweep perm gen total 21248K, used 3082K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) */
本次实验,设置了XX:CMSScheduleRemarkEdenPenetration=35,只有2秒的时候,优先于-XX:CMSMaxAbortablePrecleanTime=5000设置的5秒触发了remark,可以观察
2.196: [CMS-concurrent-abortable-preclean-start]
4.216: [CMS-concurrent-abortable-preclean: 0.023/2.020 secs] [Times: user=0.02 sys=0.00, real=2.02 secs]
时间停顿有2秒钟。
附录
参考文章
http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
http://szhnet.iteye.com/blog/1423894
http://book.51cto.com/art/201011/235590.htm
文章更新日志
2014-01-24
完善个别CMS参数的说明
作者简介
昵称:澳洲鸟
姓名:朴海林
QQ:85977328
MSN:6301655@163.com
发表评论
-
java for 的几种用法
2014-12-02 09:59 1280J2SE 1.5提供了另一 ... -
finally不执行的陷阱
2014-05-16 09:23 1134写了个DEMO,说明下finally在System.exit( ... -
URI和URL的区别
2014-03-26 10:38 1300String HttpServletRequest.getRe ... -
Iterator与ListIterator区别
2014-03-23 22:21 1158Iterator:只能正向遍历集合,适用于获取移除元素。Lis ... -
快速失败特性
2014-03-23 22:20 1157从高级别层次来说快速失败是一个系统或软件对于其故障做出 ... -
java继承静态方法复写
2014-03-12 09:28 4427最近和人交流,遇到了这样一个问题,就是继承当中,静态方法复写的 ... -
关于return和finally
2014-03-11 10:19 2840本来return和finally也不是个事。之前看虚拟机运行原 ... -
JVM内存分析系列(十三)内存实践理解
2014-01-22 10:09 3123java堆 包括 新生代:eden,survival(from ... -
JVM内存分析系列(十二)G1垃圾收集器的使用
2014-01-16 17:10 11523Garbage First(G1)致力于在多CPU和大内存服务 ... -
eclipse内存优化
2014-02-26 14:00 1558修改eclipse的配置文件,添加或者修改参数如下,其中XX: ... -
远程调试(二)JVM
2014-01-10 11:43 1747从J2SE 1.4.2开始,就已经提出并实现了JavaTM P ... -
JVM内存分析系列(九)JDK监控和故障处理工具
2014-01-08 18:33 2090jps JVM Process Status Tool,显示指 ... -
guava--google----用来替代commons的jar包
2014-01-06 18:21 16838Guava 是一个 Google ... -
JVM内存分析系列(八)垃圾收集器介绍及性能指标
2013-12-30 13:33 2042内存回收的具体实现。 停顿时间越短就越适合需要 ... -
JVM内存分析系列(七)垃圾收集算法
2013-12-30 12:58 1138内存回收的方法论 标记-清除算法 Mark-Sweep 分为 ... -
JVM内存分析系列(六)对象存活判断
2013-12-26 11:10 1159对象存活常用2种算法 引用计数算法 给对象中添加一个 ... -
JVM内存分析系列(五)浅谈finalize()方法
2013-12-28 18:47 1473根搜索算法中不可达对象在回收之前,要进行二次标记。 第 ... -
JVM内存分析系列(四)对象4种引用
2013-12-25 20:07 1327强引用:只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象 ... -
JVM内存分析系列(三)JVM内存模型初步
2013-12-25 17:09 1165根据《Java虚拟机规范(第二版)》的规定,结构如下 1 ... -
JVM内存分析系列(二)内存溢出的类型分析
2013-12-24 23:54 1842启动参数 -server -verbose:gc -Xms10 ...
相关推荐
JVM内存管理是Java虚拟机的核心机制之一,其主要包含对象的创建、内存分配、...通过对内存分配策略、对象生死判定、垃圾收集算法和垃圾收集器的理解与应用,可以更好地掌握JVM的内存管理,从而提升应用性能和稳定性。
- **垃圾收集器**:不同的JVM版本有多种GC实现,如Serial、Parallel、Concurrent Mark Sweep (CMS)、G1、ZGC、Shenandoah等,它们各有特点和适用场景。 4. **内存分配与GC策略** - **年轻代与老年代**:新生代...
通过对JVM_GC调优的深入探讨,我们可以看出JVM内存管理和垃圾回收机制的复杂性。合理的GC策略和参数调整对于提高Java应用的性能至关重要。理解不同GC算法的特点和适用场景,可以帮助开发者选择最适合特定应用场景的...
总结来说,JVM性能调优是多方面的工作,包括理解内存结构、选择合适的垃圾收集器、调整内存参数以及优化代码实现。通过细致入微的调优,可以显著提升Java应用的性能和稳定性。这份PDF资料将详细介绍这些关键点,帮助...
CMS收集器,全称并发标记扫描,是一种用于老年代的垃圾收集器,特别适合于内存大且需要低暂停时间的应用。CMS分为四个阶段:初始标记、并发标记、最终标记和并发清除。在初始和最终标记阶段,GC会暂停应用,但这两个...
详细说明了J2SE 5.0版本中HotSpot JVM所实现的垃圾收集器类型,例如串行收集器、并行收集器、并行整理收集器和并发标记-清除(CMS)收集器等。每种收集器都有其特定的应用场景和性能特点。 4. 舒适性(Ergonomics)...
深入理解JVM内存分配、垃圾收集(Garbage Collection, GC)原理以及垃圾收集器的工作方式对于优化程序性能至关重要。 首先,我们要了解JVM内存结构。在Java中,内存主要分为以下几个区域: 1. **堆内存(Heap)**...
5. CMS收集器设置:对于响应时间敏感的应用,可以使用CMS收集器,通过-XX:+UseConcMarkSweepGC和-XX:+UseParNewGC启用,并调整相关参数如-XX:CMSInitiatingOccupancyFraction来控制触发CMS的时间点。 6. G1收集器:...
4. **并发清理(Concurrent Sweeping)**:这个阶段也是并发的,CMS收集器会清理未被标记的对象,释放内存。由于这个阶段用户线程仍在运行,新的垃圾可能会产生,这部分垃圾将在下一次GC时处理。 5. **预清理...
Java虚拟机(JVM)调优与内存管理是优化Java应用程序性能的关键环节。JVM内存主要分为新生代、老年代和持久代,每个区域都有其特定的垃圾回收策略。 1. 引用计数法(Reference Counting):这是一种简单的垃圾回收...
- `-XX:CMSInitiatingOccupancyFraction`:设置CMS收集器启动的阈值。 **GC优化** 垃圾收集是JVM性能的关键因素,优化GC主要是减少停顿时间并提高整体效率。常见的GC调优策略包括: 1. 选择合适的GC算法:如...
通过设置JVM参数可以影响GC行为,如`-Xms`和`-Xmx`控制堆内存大小,`-XX:NewRatio`设置新生代与老年代的比例,`-XX:MaxPermSize`或`-XX:MetaspaceSize`控制方法区大小,`-XX:+UseConcMarkSweepGC`启用CMS收集器等。...
1. **垃圾收集器选择**:JVM提供了多种垃圾收集器,如Serial、Parallel、CMS、G1和ZGC等,每种收集器有不同的性能特征,需要根据应用的特性选择合适的GC策略。 2. **内存区域设置**:包括新生代、老年代、永久代...
在Java世界中,Java虚拟机(JVM)是运行所有Java应用程序的核心。JVM内存设置与调优是提升应用性能的...理解内存结构、选择合适的垃圾收集器、合理设置参数,并结合监控工具进行调优,是优化Java应用性能的关键步骤。
通过监控JVM内存使用、垃圾回收情况和系统性能指标,分析性能瓶颈,进行针对性优化,最终评估调优效果。 8. **性能问题举例** 遇到性能问题时,应分析症状(如频繁Full GC、内存溢出等),查看监控结果,理解原因...
《JVM、GC详解及调优》是一份深入解析Java虚拟机(JVM)和垃圾收集(Garbage Collection,简称GC)的详细资料。本文将根据提供的信息,深入阐述JVM的工作原理,GC的机制以及如何进行JVM的性能调优。 首先,JVM是...
在性能调优方面,JVM提供了许多可调整的参数,如堆大小、新生代与老年代的比例、垃圾收集器的选择等。这些参数的合理配置可以显著提高应用的运行效率。例如,通过增大堆内存以容纳更多对象,或选择合适的垃圾收集器...
JVM(Java Virtual Machine)的垃圾收集器(GC,Garbage Collector)扮演着核心角色,负责自动管理应用程序的内存,防止内存泄漏和性能问题。MAT(Memory Analyzer Tool)是由Eclipse基金会提供的一个强大的分析工具...
为了有效地使用这类工具,你需要了解一些基本的JVM内存管理概念,如新生代、老年代、永久代(对于较旧的JVM)或元空间(对于Java 8及以上版本),以及不同的垃圾收集器,如Serial、Parallel、CMS、G1、ZGC和...