`
phantom
  • 浏览: 163161 次
社区版块
存档分类
最新评论

背包算法留存

 
阅读更多
转自http://zyfromcq.iteye.com/blog/1233471

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。
      值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值、重量就直接存入二个数组里;如果用对象模型,则要对背包以及背包问题进行对象建模。思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些。有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用其它的模型和视角,或许可以得到更好的解法。
背包建模:

动态规划法总结:
1. 动态规划法用于求解非最优化问题:
当问题实例P(n)的解由子问题实例的解构成时,比如 P(n) = P(n-1) + P(n-2) [斐波那契数列] ,而 P(n-1) 和 P(n-2)可能包含重合的子问题,可以使用动态规划法,通过自底向上的迭代,求解较小子问题实例的解,并作为求解较大子问题实例的解的基础。关键思想 是: 避免对子问题重复求解。
比如: 求斐波那契数 F(5):
F(5)  = F(4) + F(3);
子问题: F(4) = F(3) + F(2) ;
                        F(3) = F(2) + F(1);
                                  F(2) = F(1) + F(0)
                        F(2) = F(1) + F(0);
子问题: F(3) = F(2) + F(1)
                        F(2) = F(1) + F(0)
由上面的计算过程可知,如果单纯使用递归式,则子问题 F(2) 被重复计算了2次;当问题实例较大时,这些重复的子问题求解就会耗费大量不必要的时间。 若使用动态规划法,将 F(2) 的值存储起来,当后续计算需要的时候,直接取出来, 就可以节省不少时间。

另一个比较典型的例子是: 求解二项式系数  C(n, k) = C(n-1, k) + C(n-1, k-1)

2. 动态规划法求解最优化问题:
      当问题实例P(n) 的最优解 可以从 问题实例 P(n-1) 的最优解 构造出来时,可以采用动态规划法,一步步地构造最优解。
      关键是掌握动态规划法求解问题时的分析方法,如何从问题导出 解的递推式。 实际上,当导出背包问题的递归式后,后来的工作就简单多了,如何分析背包问题,导出其最优解的递推式,我觉得,这才是最关键的地方!问题分析很重要!


如下代码有修改

package org.corpus.util;


import java.util.ArrayList;
import java.util.List;

import org.corpus.util.KnapsackProblem.Knapsack;

/** 
 * 求解背包问题: 
 * 给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn 
 * 要放入总承重为 totalWeight 的箱子中,  
 * 求可放入箱子的背包价值总和的最大值。 
 *  
 * NOTE: 使用动态规划法求解 背包问题 
 * 设 前 n 个背包,总承重为 j 的最优值为 v[n,j], 最优解背包组成为 b[n]; 
 * 求解最优值: 
 * 1. 若 j < wn, 则 : v[n,j] = v[n-1,j]; 
 * 2. 若  j >= wn, 则:v[n,j] = max{v[n-1,j], vn + v[n-1,j-wn]}。 
 *  
 * 求解最优背包组成: 
 * 1. 若 v[n,j] > v[n-1,j] 则 背包 n 被选择放入 b[n],  
 * 2. 接着求解前 n-1 个背包放入 j-wn 的总承重中,  
 *    于是应当判断 v[n-1, j-wn] VS v[n-2,j-wn], 决定 背包 n-1 是否被选择。 
 * 3. 依次逆推,直至总承重为零。 
 *     
 *    重点: 掌握使用动态规划法求解问题的分析方法和实现思想。 
 *    分析方法: 问题实例 P(n) 的最优解S(n) 蕴含 问题实例 P(n-1) 的最优解S(n-1); 
 *              在S(n-1)的基础上构造 S(n)  
 *    实现思想: 自底向上的迭代求解 和 基于记忆功能的自顶向下递归 
 */  
public class KnapsackProblem<T extends Knapsack> {  
     
	
	public static class Knapsack{
		public		int weight;
 
		public	int value;
		public int getWeight() {
			return weight;
		}
		public void setWeight(int weight) {
			this.weight = weight;
		}
		public int getValue() {
			return value;
		}
		public void setValue(int value) {
			this.value = value;
		}
	}
    /** 指定背包 */  
    private T[] bags;  
      
    /** 总承重  */  
    private int totalWeight;  
      
    /** 给定背包数量  */  
    private int n;  
      
    /** 前 n 个背包,总承重为 totalWeight 的最优值矩阵  */  
    private int[][] bestValues;  
      
    /** 前 n 个背包,总承重为 totalWeight 的最优值 */  
    private int bestValue;  
      
    /** 前 n 个背包,总承重为 totalWeight 的最优解的物品组成 */  
    private List<T> bestSolution;  
      
    public KnapsackProblem(T[] bags, int totalWeight) {  
        this.bags = bags;  
        this.totalWeight = totalWeight;  
        this.n = bags.length;  
        if (bestValues == null) {  
            bestValues = new int[n+1][totalWeight+1];  
        }  
    }  
      
    /** 
     * 求解前 n 个背包、给定总承重为 totalWeight 下的背包问题 
     *  
     */  
    public void solve() {  
          
//       System.out.println("给定背包数量:"+bags.length);  
//        for(Knapsack b: bags) {  
//            System.out.println(b);  
//        }  
//       System.out.println("给定总承重: " + totalWeight);  
          
        // 求解最优值  
        for (int j = 0; j <= totalWeight; j++) {  
            for (int i = 0; i <= n; i++) {  
              
                if (i == 0 || j == 0) {  
                    bestValues[i][j] = 0;  
                }     
                else   
                {  
                    // 如果第 i 个背包重量大于总承重,则最优解存在于前 i-1 个背包中,  
                    // 注意:第 i 个背包是 bags[i-1]  
                    if (j < bags[i-1].getWeight()) {  
                        bestValues[i][j] = bestValues[i-1][j];  
                    }     
                    else   
                    {  
                        // 如果第 i 个背包不大于总承重,则最优解要么是包含第 i 个背包的最优解,  
                        // 要么是不包含第 i 个背包的最优解, 取两者最大值,这里采用了分类讨论法  
                        // 第 i 个背包的重量 iweight 和价值 ivalue  
                        int iweight = bags[i-1].getWeight();  
                        int ivalue = bags[i-1].getValue();  
                        bestValues[i][j] =   
                            Math.max(bestValues[i-1][j], ivalue + bestValues[i-1][j-iweight]);        
                    } // else  
                } //else           
           } //for  
        } //for  
          
        // 求解背包组成  
        if (bestSolution == null) {  
            bestSolution = new ArrayList();  
        }  
        int tempWeight = totalWeight;  
        for (int i=n; i >= 1; i--) {  
           if (bestValues[i][tempWeight] > bestValues[i-1][tempWeight]) {  
               bestSolution.add(bags[i-1]);  // bags[i-1] 表示第 i 个背包  
               tempWeight -= bags[i-1].getWeight();  
           }  
           if (tempWeight == 0) { break; }  
        }  
        bestValue = bestValues[n][totalWeight];  
    }  
      
    /** 
     * 获得前  n 个背包, 总承重为 totalWeight 的背包问题的最优解值 
     * 调用条件: 必须先调用 solve 方法 
     *  
     */  
    public int getBestValue() {   
        return bestValue;  
    }  
      
    /** 
     * 获得前  n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 
     * 调用条件: 必须先调用 solve 方法 
     *  
     */  
    public int[][] getBestValues() {  
          
        return bestValues;  
    }  
      
    /** 
     * 获得前  n 个背包, 总承重为 totalWeight 的背包问题的最优解值矩阵 
     * 调用条件: 必须先调用 solve 方法 
     *  
     */  
    public List<T> getBestSolution() {  
        return bestSolution;  
    }  
      
} 




测试代码:
 
public class KnapsackTxt {

	public static void beibao(String dir, Txt[] source, double double1) {
		  int target=Math.round((float)double1);
		  KnapsackProblem<Txt> kp = new KnapsackProblem<Txt>(source, target);    
		  kp.solve(); 
		  int num0=0;
		  for (Txt txt: kp.getBestSolution()) {
				 
					 
				   Txt txtn=(Txt)txt;
					String fn=txtn.f.getAbsolutePath();
					fn=fn.replaceAll("business2", "business_small");
					try {
						
						FileCopy.copy(txtn.f.getAbsolutePath(), fn);
						
//						String utf16=	UFileReader.read(out[i].f, "UTF-16");
//						WriteFileUtils.writeFile( fn,utf16);
					} catch (Exception e) {
						
						System.out.println(txtn.f+">>>");
						 
						e.printStackTrace();
					}
					num0=num0+txtn.value;
				}

		  if(target>num0){
			  System.out.println("* "+dir+"\t目标值 "+target+ "\t"+"  实际值"+num0 );
		  }else{
			  System.out.println("  "+dir+"\t目标值 "+target+ "\t"+"  实际值"+num0);  
		  }
		
		
	}

}


import java.io.File;
import org.corpus.util.KnapsackProblem;
public class Txt extends KnapsackProblem.Knapsack{
	public	int len;
	
	public	String dir;
	public String name;
	public File f;
	public int level;
	public String ppath(){
		return f.getParentFile().getParentFile().getAbsolutePath();
	}
}

原文测试代码,内容比较符合背包:
package com.wootion.algorithmic;

public class KnapsackTest {  
    
    public static void main(String[] args) {  
          
        Knapsack[] bags = new Knapsack[] {  
                new Knapsack(2,13), new Knapsack(1,10),  
                new Knapsack(3,24), new Knapsack(2,15),  
                new Knapsack(4,28), new Knapsack(5,33),  
                new Knapsack(3,20), new Knapsack(1, 8)  
        };  
        
        int totalWeight = 10;  
        KnapsackProblem kp = new KnapsackProblem(bags, totalWeight);  
          
        kp.solve();  
        System.out.println(" -------- 该背包问题实例的解: --------- ");  
        System.out.println("最优值:" + kp.getBestValue());   
        System.out.println("最优解【选取的背包】: ");  
        System.out.println(kp.getBestSolution());  
        System.out.println("最优决策矩阵表:");  
        int[][] bestValues = kp.getBestValues();  
        for (int i=0; i < bestValues.length; i++) {  
            for (int j=0; j < bestValues[i].length; j++) {  
                System.out.printf("%-5d", bestValues[i][j]);  
            }  
            System.out.println();  
        }  
    }  
}   
分享到:
评论

相关推荐

    pack.rar_背包_背包算法_背包算法 matlab_背包算法MATLAB

    【标题】"pack.rar_背包_背包算法_背包算法 MATLAB_背包算法MATLAB" 提供了一个关于使用MATLAB实现背包问题算法的详细资料。背包问题是一个经典的优化问题,广泛应用于资源分配、决策制定等领域。在这里,我们将深入...

    背包算法JAVA实现

    背包算法 背包算法JAVA实现 背包算法JAVA实现

    java背包算法例子

    原先在网上找到某位大虾写的一个简单的背包算法,于是在其基础上改成适合我们目前项目中要求的背包算法。此算法要求传入一组对象集合(其中的对象中只包含主键和值)和某个条件值,然后能打印sum(对象.值)条件的1个...

    各种背包算法详解

    **背包算法详解** 在计算机科学和算法设计中,背包问题是一种经典的优化问题,它源于组合优化和图论领域。背包问题通常与资源分配、决策分析和最优化策略相关,广泛应用于项目管理、库存控制、软件工程等多个领域。...

    matlab程序(解决0-1背包问题).zip_背包_背包算法 matlab_背包问题_遗传算法 背包_遗传算法背包

    在这个0-1背包问题的解决方案中,遗传算法被用来寻找能够最大化总价值的物品组合。 在MATLAB环境中实现遗传算法解决0-1背包问题,主要涉及以下步骤: 1. 初始化种群:随机生成一定数量的个体(解),每个个体代表...

    基于0-1背包算法的社交网络行为隐写术.docx

    基于0-1背包算法的社交网络行为隐写术 本文提出了一种基于0-1背包算法的社交网络行为隐写术,以解决传统隐写术的安全性问题。该方法通过引入0-1背包人员分配协议,降低了发送者和接收者有较多的共同好友这一限制...

    背包问题.rar_matlab算法实现背包问题_价值背包算法_背包最大价值_背包问题_遗传算法 背包

    《基于MATLAB的遗传算法在背包问题中的应用》 背包问题是一种典型的组合优化问题,广泛存在于资源分配、项目选择等领域。在本项目中,我们利用MATLAB强大的计算能力,结合遗传算法,对背包问题进行了有效的求解,以...

    背包 背包问题 背包算法

    在NOIP这样的信息学竞赛中,背包问题是检验参赛者逻辑思维、编程能力和算法理解的重要题目类型。选手需要在限定时间内设计并实现高效的解决方案。理解和掌握背包问题的解法,对于提升信息技术素养,培养计算思维有着...

    Java背包算法规划求解

    Java背包算法规划求解是一种经典的优化问题,常用于解决资源有限条件下的最大化效益问题。在给定的场景中,我们有n种商品,每种商品只有一个,并且有200块钱去购物,目标是使购买的商品总价值最大。这个问题可以抽象...

    baglock_密码学背包算法_pridebt1_

    这个标题暗示我们这里有一个名为“baglock”的程序,它可能是用于实现某种特定类型的背包问题的加密或解密算法。"pridebt1"可能是该算法的特定版本或者开发者的一个标识。 【描述】:“用C实现的关于密码学编程的...

    0-1背包及部分背包算法实验

    0-1背包问题和部分背包问题是运筹学和计算机科学中的经典优化问题,它们在资源分配、任务调度、投资决策等多个领域有广泛应用。本实验主要关注这两种问题的算法实现,特别是动态规划和贪心策略。 0-1背包问题源于一...

    C++ 编写的背包算法程序 动态规划

    C++编写的背包算法程序 cpp 动态规划

    01背包算法 C语言代码

    01背包问题算法 动态规划 代码 01背包问题算法 动态规划 代码 01背包问题算法 动态规划 代码

    PHP 01背包算法

    用 PHP 实现的 01 背包算法,参考了网上的相关 C++ 算法,用来方便 PHP 程序员改造使用,我是用它来实现在指定宽度的栏中整齐的排列一堆标签云,效果非凡且神奇,初次使用时一瞬间的确有这样的感觉。

    beibao.rar_背包 问题_背包算法 matlab_背包算法MATLAB_贪婪算法_贪婪算法 MATLAB

    标题中的“beibao.rar”是一个压缩包文件,其中包含了关于“背包问题”的解决方法,主要使用了“贪婪算法”并以MATLAB编程语言进行实现。贪婪算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的...

    python 编写的背包算法

    输入物品数量n,报的容量m,每个物品的体积,每个物品的价值 输入:最大价值

    分支界限思想解0-1背包算法

    它描述的是这样的场景:我们有一组物品,每种物品都有一个重量和价值,我们需要选择一部分物品放入一个容量有限的背包中,使得放入背包的物品总重量不超过背包的容量,同时使这些物品的总价值最大。0-1背包问题的...

    0-1背包_0-1背包问题_背包算法_背包_

    0-1背包问题在实际应用中有很多变种,如完全背包问题(每个物品可以无限数量放入背包)、多重背包问题(每个物品有固定数量)等,每种变种都有相应的优化算法。理解和掌握0-1背包问题及其算法,对于解决实际生活中...

    贪心算法 背包问题 c语言

    ### 贪心算法在背包问题中的应用及C语言实现 #### 一、贪心算法简介 贪心算法是一种在每个步骤中都选择局部最优解的策略,希望通过一系列的局部最优选择来达到全局最优解的目的。它适用于某些特定的问题类型,在...

    C++实现回溯算法 0 1 背包算法

    C++实现回溯算法 0 1 背包算法 本文将详细介绍 C++ 实现回溯算法 0 1 背包算法的知识点。 首先,需要了解背包问题的定义。背包问题是指在有限容量的背包中,如何选择物品以达到最大价值的优化问题。在这里,我们...

Global site tag (gtag.js) - Google Analytics